
Adaptively measuring quantum expectation
values using the empirical Bernstein

stopping rule

Bachelorarbeit
am Institut für theoretische Physik, Düsseldorf

vorgelegt von

Ugur Tepe
Matrikelnummer: 2724342

Erstprüfer
Prof. Dr. Martin Kliesch

Institute for Quantum Inspired and
Quantum Optimisation

Hamburg University of Technology

Zweitprüfer:
Prof. Dr. Dagmar Bruß

Institut für theoretische Physik III
Heinrich-Heine-Universität

Düsseldorf

27.11.2023

Abstract
Quantum computing promises to be exponentially faster than classical com-
puters, in a wide array of computational tasks. However, the current genera-
tion of quantum hardware is not capable of achieving such feats, due to noise
limitations.
Methods such as variational quantum algorithms (VQA) are developed with
the goal of extracting the most out of currently available quantum hardware.
While VQAs are a popular and promising approach, they face a multitude of
issues that need to be solved. The issue this thesis is concerned with is the
reduction of the measurement effort when measuring an expectation value up
to certain accuracy.
Hence, the goal of this thesis is to utilise an adaptive stopping algorithm,
the so-called empirical Bernstein stopping (EBS) algorithm, to reduce the
measurement effort. As EBS makes use of empirical variance information, it
promises better results than more commonly used non-adaptive alternatives,
such as Höffding’s inequality or a simple sample budget.
Reducing the measurement effort is, however, not a unique problem of VQAs
and therefore the results of this thesis will be applicable to a wider array of
quantum algorithms.

i

Contents

1. Introduction 1

2. Preliminaries 3
2.1. Probability Theory . 3

2.1.1. Random Variables . 3
2.1.2. Expectation Value . 4
2.1.3. Variance . 4

2.2. Concentration Inequalities . 5
2.2.1. Markov’s Inequality . 5
2.2.2. Höffding’s Inequality . 5
2.2.3. Bernstein’s Inequality 6
2.2.4. Höffding’s vs. Bernstein’s Inequality 7

2.3. Quantum mechanics . 8
2.3.1. Schrödinger’s Equation 8
2.3.2. Operators . 9
2.3.3. Operator Exponential 10

2.4. Quantum computing . 10
2.4.1. Qubits . 11
2.4.2. Pauli Operators/ Matrices 13
2.4.3. Quantum Gates . 13
2.4.4. Measurements in Different Bases 17
2.4.5. Variational Quantum Algorithms 17

3. Methods 22
3.1. Empirical Bernstein Stopping (EBS) 22

3.1.1. (ϵ, δ)-Stopping Rules . 22
3.1.2. Empirical Bernstein Stopping Rule 23
3.1.3. Base Algorithm . 24
3.1.4. Modifications on EBA 26
3.1.5. Effect of the Variance on EBS 28

3.2. Constructing a suitable VQE ansatz 30
3.2.1. Quantum Decomposition 30
3.2.2. Hamiltonian to Parametrized Circuit 31
3.2.3. EBA inside a VQE . 32

4. Results 33
4.1. Toy Example: Two Qubit System 33

4.1.1. Effect of ϵ on Actual Accuracy and Success Probability 36
4.1.2. Effect of ϵ on Sample Complexity 37

4.2. Dissociation Curve of H2 . 40
4.2.1. VQE run for fixed d . 41
4.2.2. Comparing Measurement Strategies 42
4.2.3. Effect of ϵ on Actual Accuracy and Success Probability 43
4.2.4. Effect of ϵ on Sample Complexity 44
4.2.5. Dissociation Curve . 46

5. Conclusion 48

6. Outlook 49

ii

A. Bernstein Bound Derivation 50

B. Quantum Mechanics/ Computing 51
B.1. Exponential Operator Derivation 51
B.2. Parameter Shift Rule . 51
B.3. Quantum Gates . 52

C. Quantum Circuit Decomposition: Example Circuit 53

D. Coefficients {gi} for eq. (105) 53

iii

1. Introduction
Although the current generation of quantum computers can exceed classi-
cal computers in tasks specifically designed for available quantum hardware
[1, 2], a practical quantum advantage is yet to be achieved. Thus, the goal is
to utilise the available hardware, often referred to as noisy intermediate scale
quantum era (NISQ) hardware, to achieve said advantage over classical com-
puters. These NISQ quantum computers are limited in the number of qubits
and are subject to noise. The latter effectively restricts the total length of the
computation as well as the total number of operations used.
Fault-tolerant (FT) quantum computers are the solution for the noise prob-
lem, however, they require more qubits than currently available. Additionally,
adding more qubits and increasing circuit depth to implement FT quantum
computers also increases noise.
Variational quantum algorithms (VQAs) are a popular approach to employ
the current generations of quantum hardware. These algorithms are designed
to obey the limited circuit depth and qubit numbers. The key idea behind
VQAs is to utilise classical computers that interface with the quantum com-
puter via the parameters of a parameterised quantum circuit. In particular,
these parameters are optimised using classical optimisation techniques, e.g., a
gradient-based one. These parameters are tuned such that the cost function
is minimised. The cost function can be, for example, the expected energy of
the Hamiltonian as a function of some parameter(s).
This is possible due to the variational principle, which states that any mea-
sured energy is always above the ground energy. Thus, optimising towards the
ground energy is effective in finding the ground state or any other minima.
Naturally, such methods can be used to solve problems from quantum chem-
istry or problems of combinatorial nature [3]. However, these VQAs face
several issues:

• The optimisation process can get stuck in a barren plateau or local min-
ima [4, 5],

• The sample effort for the read-out of the algorithm can bottleneck the
VQA [3, 6],

• In general, finding a suitable parametrized circuit (often referred to as
the ansatz) is hard. [7].

Barren plateaus are regions in the cost landscape where the expected gradient
goes to zero with increased system size, causing the optimiser to get stuck. A
similar problem can be encountered in local minima as the gradient vanishes
there as well.
For the barren plateau problem there are multiple suggested techniques to
avoid them [8–10].
Especially in quantum chemistry problems, a certain accuracy is required
which results in a sample bottleneck 1 as naturally one wants to also min-
imise the amounts of samples that are required for an accurate estimate. Such
estimates are produced using so-called stopping algorithms, which guarantee
an accuracy and confidence. They determine when to stop sampling according

1Measuring a state leads to its collapse, hence it has to be re-prepared for additional
measurements.

1

to a specified condition, e.g., the accuracy of the current estimate.
One such algorithm is the empirical Bernstein stopping (EBS) algorithm.
Stopping rules, like EBS, manage how many samples are needed to estimate
the mean of a series of i.i.d random variables. This estimate is called an (ϵ, δ)-
estimate, as it is within ϵ of the actual mean, with the probability of at least
1 − δ. In contrast to similar stopping rules, EBS incorporates the empirical
variance, which is estimated as well, into its stopping condition. Hence, EBS
is called an adaptive stopping rule, as it is dependent on the explicit samples
drawn.
The goal of this thesis is to test whether EBS decrease the sample requirements
for quantum algorithms such as VQAs. EBS performs well, especially when
the variance of the random variable is low compared to their range. VQAs
provide a wide array of variance regimes, as near a minima or saddle point the
variance vanishes while increasing in other regions.
As the overarching goal of VQAs is to estimate the ground energy, EBS may
provide a significant improvement compared to usual methods, as it benefits
from the vanishing variance. Over a VQE optimisation run, this may lead to
a more efficient sampling strategy.

2

2. Preliminaries

This section serves as a quick primer on topics such as probability theory,
quantum mechanics and quantum computing. Firstly, a refresher on probabil-
ity theory is given, as concepts like random variables and expected values are a
key concepts in this thesis. Further, probability theory is needed to introduce
the concept of concentration inequalities, on which the empirical Bernstein
stopping algorithm is based on.
Secondly, quantum mechanics serves as a foundation to quantum computing,
where concepts as qubits, gates and circuits are introduced as well as varia-
tional quantum algorithms.

2.1. Probability Theory

This section provides a refresher on the basics of probability theory. Prob-
ability theory is a fundamental component of quantum mechanics, quantum
information. Alongside the basics of probability theory, this section also intro-
duces the concept of tail bounds, starting with the most fundamental one. Tail
bounds are an important conceptual tool to understand as they are employed
by stopping algorithms which are introduced and discussed in latter sections
of this thesis.

2.1.1. Random Variables

A random variable X is a function that maps from an (unknown) probability
space S to a real number R [11].

X : S → R (1)

Random variables can be continuous or discrete, however in this thesis only
discrete random variables are of importance. The randomness of the random
variable is tied to the random experiment they come from. For example, in
the case of a die, the trivial random variable looks like:

x(1) = 1, x(2) = 2, x(3) = 3, x(4) = 4, x(5) = 5, x(6) = 6 (2)

with X = {x(i)} and i = {1, 2, . . . , 6}.
Each random variable xi occurs with a probability of 1/6 and has the value of
the corresponding die number.
Another example would be to divide the outcomes of the dice into odd and
even facing numbers. This would result in the corresponding random variable
only having 2 values, odd or even:

x(odd) = −1 x(even) = 1 (3)

with X = {x(odd), x(even)}.
Each of these two random variables has the associated probability of 1/2 and
discrete number, 1 or −1, mapped to them.
When a collection of identical random variables is considered, and it is assumed
that each one is independent of the other, they are called independent and
identically distributed random variables (i.i.d.).
Multiple dice throws, for example, are i.i.d. random variables.

3

2.1.2. Expectation Value

The expected value of a random variable is the average of every outcome that
can occur multiplied by its probability density. It is also known as the first
moment (because X only goes in linearly).
In the discrete case, it is defined as:

E[X] = ⟨X⟩ = µ =
∑

i

xipi, (4)

with pi being the probability of xi.
Of course calculating the expected value like this is not always possible as the
probability distribution is usually unknown, to that extent one can use the
so-called empirical mean. The aforementioned is calculated as follows:

X̄ = 1
N

N∑
i=1

Xi . (5)

2.1.3. Variance

The variance measures how much the random variable may vary from its
expected value. The variance of a random variable X is the expected squared
deviation from its expected value E[X] = µ:

Var(X) = E
[
(X − µ)2

]
= E

[
X2
]
− E [X]2 . (6)

For a discrete random variable X, assuming the probabilities are known, its
variance can be calculated as:

Var(X) =
∑

i

pi(xi − µ)2. (7)

In many applications it is not possible to access the probabilities pi to calcu-
late the variance. For these cases, there is the so-called (unbiased) sample
variance Vars. Like the name suggests, the sample variance is calculated
from N samples:

Vars(X) = 1
N − 1

N∑
i=1

(xi − X̄)2, (8)

with X̄ being the empirical mean.
Closely related to the variance is the standard deviation, σ:

σ =
√

Var(X) . (9)

Hence, the variance is also commonly denoted as σ2.
The variance of a bounded probability distribution can be bounded using
Popoviciu’s inequality [12]:

0 ≤ σ2 ≤ R2

4 . (10)

4

2.2. Concentration Inequalities

When considering a series of random variables, it may be of use to determine
how far they deviate from their expected value based on the number of sam-
ples. It is clear that the empirical mean of this sequence converges to the
actual mean or expected value, based on how many samples are drawn. Often
it is of interest to know when the empirical mean is converged such that it
is within a constant from the actual mean. This convergence can be charac-
terised using so-called concentration inequalities.
These inequalities vary in how tightly they bound the tail and the restric-
tions imposed on the random variables. The most fundamental inequality is
Markov’s, it assumes only that the random variables are almost surely non-
negative2. Markov’s inequality serves as an introduction to more advanced
inequalities like Bernstein’s inequality and Höffding’s inequality are also in-
troduced.

2.2.1. Markov’s Inequality

Let X be an almost surely non-negative random variable and ϵ > 0, then
Markov’s inequality is as follows:

P[X ≥ ϵ] ≤ E[X]
ϵ

. (11)

With this inequality the upper bound to probabilities of various events can be
calculated, e.g. how likely it is at most to roll a die that is greater or equal to
a 4.

P[X ≥ 4] ≤ 3.5
4 = 0.875. (12)

The 87.5% is only a crude upper bound for the probability. Compared to the
actual probability P[X ≥ 4] = 50%, the upper bound provided by Markov’s
inequality is substantially larger. This discrepancy is due to the fact that
Markov’s inequality assumes only that the random variables are almost surely
non-negative. If more assumptions are made, or even more empirical informa-
tion is taken into account, these bounds can be improved significantly. The
subject of the following subsection are such methods.

2.2.2. Höffding’s Inequality

An inequality frequently used for stopping algorithms, e.g., in machine learn-
ing or quantum computing, is Höffding’s inequality [13]. Höffding’s inequality
gives a bound on how much the mean of a series of random variables deviates
from its expected value µ. This bound depends on their range R and the
number of samples t taken.
Let X1, ..., Xt be independent random variables with ai ≤ Xi ≤ bi and
Xt = 1

t

∑t
i=1Xi, then Höffding’s inequality [14] is as follows:

P[|Xt − µ| ≥ ϵ] ≤ 2 exp
(
− 2(tϵ)2∑t

i=1(bi − ai)2

)
. (13)

2Almost surely non-negative random variables are random variables that fulfil:
P[X ≥ 0] = 1. This means they can take negative values, but with the probability
of 0 to occur.

5

If all Xi are bounded by the same interval [ai, bi] with the range R = b − a.
equation (13) simplifies to:

P[|Xt − µ| ≥ ϵ] ≤ 2 exp
(
−2tϵ2
R2

)
=: δ, (14)

with ∑t
i=1(bi − ai)2 = tR2 and defining the left-hand side as δ.

δ is the probability that after t many samples, the empirical mean deviates
at-least ϵ from the actual mean. This inequality can be rearranged to a bound
form [15], which is more suitable to quantify the current accuracy of the esti-
mate:

|Xt − µ| ≤ R

√
ln(2/δ)

2t . (15)

This inequality holds with probability of at-least 1 − δ. Since Höffding’s in-
equality depends only on the range R, we can set the right-hand side of eq.
(15) equal to a desired accuracy ϵ and confidence 1− δ and solve for t.

tmin := 2
(
R

ϵ

)2
ln (2/δ). (16)

tmin is also referred to as the sample complexity of the random variable, as it
determines how many samples are needed to obtain an estimate that is within
ϵ, 1− δ of the time. This concept of having an estimate, characterized by the
two parameters ϵ and δ is called an (ϵ, δ) estimate and will be discussed in a
latter section (see sec. 3.1.1) in more detail.

2.2.3. Bernstein’s Inequality

Similar to Höffding’s inequality, Bernstein’s inequality also bounds the sum
of random variables. The key difference is that unlike Höffding’s inequality,
Bernstein’s is dependent on the variance of the random variables as well. Let
X1, ..., Xt be i.i.d. random variables with range R, expected value µ, and
variance σ2 each.
Let Xt = 1

t

∑t
i=1Xi and Σ2 = ∑t

i=1 σ
2
i . Then, Bernstein’s inequality [14] is

as follows:
P[|Xt − µ| ≥ ϵ] ≤ 2 exp

(
− (tϵ)2/2

Σ2 +Rtϵ/3

)
!= δ. (17)

Like with Höffding’s inequality, it is beneficial to rewrite the inequality into a
bounded form. The derivation of this bound can be found in appendix A and
yields:

|Xt − µ| ≤ σ

√
2 ln (2/δ)

t︸ ︷︷ ︸
O(1/

√
t)

+ R ln (2/δ)
3t︸ ︷︷ ︸

O(1/t)

. (18)

Because the variance is unknown in practical scenarios (such as the under-
lying distribution), the variance in equation (18) has to be replaced [16] by
the empirical standard deviation σt =

√
1
t

∑t
i=1(Xi −Xt)2. This yields the

empirical form of eq. (18):

|Xt − µ| ≤ σt

√
2 ln (3/δ)

t
+ 3R ln (3/δ)

t
. (19)

6

A proof of the inequality and bound can be found in [16]. The fact that the
variance can be replaced with an estimated variance in Bernstein’s bound is
a surprising and profound statement. This result makes it possible to use
Bernstein’s bound in cases where the probability distribution and the corre-
sponding variance is not known.
In the following section, the previously introduced bounds of Bernstein and
Höffding are quickly compared with each other.

2.2.4. Höffding’s vs. Bernstein’s Inequality

To better understand in which scenarios Bernstein’s bound is advantageous
over Höffding’s bound, it is useful to compare the inequalities. In the empirical
Bernstein bound (18), the term with the empirical standard deviation or the
empirical variance decreases with 1/

√
t while the term with the range R de-

creases with 1/t, rendering the term that involves the range negligible for large
t. If the standard deviation is substantially smaller than the range, Bernstein’s
bound becomes much tighter than Höffding’s bound for larger t. In this case,
the remaining term both decrease with O(1/

√
t). Hence, the advantage of one

bound over the other depends on whether σ ≪ R is fulfilled.

|Xt − µ| ≤ σ

√
2 ln (3/δ)

t
+ R ln (2/δ)

3t (Bernstein’s Bound) (20)

|Xt − µ| ≤ R

√
ln(2/δ)

2t (Höffding’s Bound) (21)

with δ fixed to 0.1.
We plot the comparison of the two bounds (20) & (21) as a function of the
sample number t, the range R and the variance σ2 in figure 1.
Note that the variance of any bounded probability distribution is bounded by
R2/4, see eq. (10). Hence, for a range of R = 2 the maximally possible vari-
ance is σ2 = 1, which is the worst-case for Bernstein’s bound. Consequently,
Höffding’s bound is seen to be tighter than Bernstein’s bound in said worst-
case, in figure 1. However, Bernstein’s bound remained tighter for larger t, for
the remaining cases. Additionally, we observe that Höffding’s bound does not
depend on σ2, hence does not benefit from decreasing variance as Bernstein’s
bound does. In the case where the variance is set constant and the range R
is increased, apart from the worst-case scenario, Bernstein’s bound becomes
tighter as the condition σ ≪ R is approached.

7

10−1

100
|X

t
−
µ
|

Range R = 2

Bernstein’s

Höffding’s

σ2 = 1

σ2 = 1
2

σ2 = 1
4

0 20 40 60 80 100
No. Samples t

100

101

|X
t
−
µ
|

Variance σ2 = 1

R = 2

R = 4

R = 8

Figure 1: Bernstein’s (20) and Höffding’s bound (21) as a function of the num-
ber of samples t and the range R. Different values of R and σ
are indicated by the corresponding colours respectively. Bernstein’s
bound is represented by a solid line, Höffding’s with a dashed line.
Further, the range is set to R = 2 in the top plot, while the variance
is set to σ2 = R2/4 = 1 in the bottom figure. Note that in case of
R = 2 and σ2 = 1, Höffding’s bound is tighter than Bernstein’s,
while for the other scenarios Bernstein’s bound remain tighter for
large t. The right-hand sides of the corresponding equations are
plotted, see equations (20) & (21).

2.3. Quantum mechanics

This section gives a brief recap of quantum mechanics such as operators, Pauli
matrices and two-level systems, while also briefly introducing the tensor prod-
uct. With these concepts, quantum circuits and quantum gates are introduced.
As a follow-up, variational quantum algorithms are introduced, including the
gradient-descent method to classically update the circuit’s parameters.

2.3.1. Schrödinger’s Equation

Quantum states can be represented using a state vector |ψ⟩. This state vector
contains all information of that particular system. Similar to Newton’s second
law, one can use Schrödinger’s equation to calculate the time evolution of a
given quantum state |ψ⟩ based on a Hamiltonian Ĥ. Schrödinger’s equation is
the fundamental equation in quantum mechanics and reads as follows:

iℏ
∂ |ψ(t)⟩
∂t

= Ĥ |ψ(t)⟩ . (22)

8

The equation above is the time time dependent Schrödinger’s equation. The
time independent equation is as follows:

Ĥ |ψ⟩ = E |ψ⟩ ,

with E being the energy of the state |ψ⟩.
Solving the time in dependent Schrödinger’s equation yields a state that is
independent of time. To obtain a time evolution of such state, the unitary
time evolution operator Û(t− t0) may be used. This operator propagates
a state at a given time t0 to a latter time t.

Û(t, t0) = e− iĤ
ℏ (t−t0)

|ψ(t)⟩ = Û(t, t0) |ψ(t0)⟩

= e− iĤ
ℏ (t−t0) |ψ(t0)⟩ (23)

The state vector itself does not induce a probability density, only the modulus
squared has physical meaning, as it is interpreted as a probability pi:

pi = |⟨i|ψ⟩|2. (24)

2.3.2. Operators

An operator Â is a linear function that maps a state |ψ⟩, onto another state
|ϕ⟩.

Â|ψ⟩ = |ϕ⟩, (25)

if |ψ⟩ ∝ |ϕ⟩ then |ψ⟩ is an eigenstate of operator Â, i.e.:

Â|ψ⟩ = λ|ψ⟩, (26)

where λ the corresponding eigenvalue.
Two distinct eigenvectors of an operator are orthogonal to each other, if the
operator is normalised. Concisely, with the Kronecker δ, this means that:

⟨ψi|ψj⟩ = δij . (27)

In quantum mechanics, only eigenvalues are possible values for the outcomes
of the corresponding observable Â. Any such operator that corresponds to an
observable has to be linear and Hermitian, to ensures real eigenvalues.

Â(|f⟩+ |g⟩) = (Â|f⟩) + (Â|g⟩) (linear) (28)
Â = Â† (Hermitian) (29)

Being linear, operators can also be expressed as matrices 3:

Â =

⟨ψ1|Â|ψ1⟩ . . . ⟨ψ1|Â|ψm⟩
⟨ψ2|Â|ψ1⟩ . . . ⟨ψ2|Â|ψm⟩

...
...

...
⟨ψm|Â|ψ1⟩ . . . ⟨ψm|Â|ψm⟩

 =

A11 . . . A1m

A21 . . . A2m
...

...
...

Am1 . . . Amm

 (30)

3This is only possible if the corresponding Hilbert-space is finite dimensional, e.g., when
considering a finite number of basis states.

9

with m <∞ and ψi, ψj being basis states.
Expressing operators as matrices will come in handy in latter sections (see.
sec. 2.4.3). The choice of the basis states is arbitrary. For instance, if |ψi⟩ and
|ψj⟩ are chosen to be eigenstates of the operator, A the corresponding matrix
is diagonal.
The expectation value of the operator Â is given by:

⟨Â⟩φ = ⟨φ| Â |φ⟩ . (31)

Because expected values are always in relation to a particular state φ, we
denote the state as a lower index as seen in equation (31). Using equation (6)
the variance of an operator Â can be calculated:

Var(Â) = ⟨Â2⟩φ − ⟨Â⟩2φ, (32)

and the standard deviation:

σ =
√

Var(Â) =
√
⟨Â2⟩φ − ⟨Â⟩2φ. (33)

2.3.3. Operator Exponential

Operators can also be convoluted by exponential functions. This is particularly
handy for the time evolution operator U(t− t0) (23). Take an operator Â that
can be expressed as an n×n matrix, then its operator exponential is defined
as:

eÂ =
∞∑

k=0

Âk

k! = 1+ Â+ Â2

2! + Â3

3! + . . . (34)

The notation Ân means that the operator Â is applied n-times on a state |∗⟩:

Ân|∗⟩ = ÂÂ . . . Â︸ ︷︷ ︸
n-times

|∗⟩. (35)

If, moreover, A2 = 1, the matrix exponential eiθA can be calculated explicitly
as can be neatly expressed as:

eiθÂ = cos (θ)1+ i sin (θ)Â. (36)

A quick derivation of the equation (36) can be found in appendix (B).
Equation (36) can also be written as a matrix. For example, set Â = σx = X
(see sec. 44):

eiθX = cos (θ)1+ i sin (θ)X =
[

cos (θ) i sin (θ)
i sin (θ) cos (θ)

]
. (37)

In this notation, the correspondence to a rotational matrix around the x-axis
is apparent. This is why, we refer to eq. (36) as a rotational operator with
rotation angle θ. We will revisit this in section 2.4.3.

2.4. Quantum computing
Quantum computing is computing using the phenomenons and principles of
quantum mechanics. These properties are what makes quantum computing
different from classical computing and where their potential lies in. For some

10

problems, a quantum computer can have better time complexity, even to such
extremes that they are only computable on them, in feasible time scales [17].
Achieving the latter is known as quantum advantage. A practical quan-
tum advantage has not been achieved yet, as the currently available quantum
hardware is prone noise which limits their efficiency [18].

The fundamental information unit in quantum computing is the so-called
qubit. Qubits are the quantum analogy to the classical bit. The aforemen-
tioned bit, can be either 0 or 1. A qubit, however, can be in the state |0⟩ or |1⟩
but also in any superposition of these two. These qubits can be transformed
by unitary gates, some of which coincide with operators from a quantum me-
chanics text book such as the Pauli matrices. Quantum circuits essentially are
a sequence of these gates, similar to a classical circuit.
The following section introduces qubits, prominent gates and a short exem-
plary circuit. Lastly, VQAs are introduced as well as their classical optimiza-
tion loop.

2.4.1. Qubits

Qubits are two-state systems that form the fundamental information units in
quantum computing, similarly to the bit in classical computing. Since a qubit
can exist in a superposition of its two basis states, |0⟩ and |1⟩, we can express
an arbitrary single-qubit state as:

|ψ⟩ = α |0⟩+ β |1⟩ =
[
α
β

]
, (38)

with α, β ∈ C and |α|2 + |β2| = 1.
The |0⟩ and |1⟩ states have already been introduced as the eigenvectors of the
σz Pauli matrix, see section 2.4.2.
Since choosing a basis is arbitrary, the convention is to refer to these basis
states as the computational basis states. Sometimes it is illustrative to express
the complex coefficients α and β in a different form [18]. Using |α|2 + |β|2 = 1
and the Pythagorean trigonometric identity, we can write the equation in
terms of the angles φ and θ:

|ψ⟩ = cos
(
θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩, (39)

with φ, θ ∈ R.
By virtue of equation (39), all possible qubit states can be represented on
a so-called Bloch sphere, see figure 2. Every point on this Bloch sphere is
a valid qubit (pure) state, defined up to a global phase, thus giving infinite
possibilities for a state representation. A mixed state 4 is represented on the
Bloch sphere by a state within it [18].

4Pure states are states that can be represented by a density matrix, i.e., ρ = |ψ⟩ ⟨ψ|. Mixed
states are represented by a convex sum, i.e., ρmixed =

∑
i
αi |ψi⟩ ⟨ψi|.

11

Figure 2: Bloch sphere [19]. Each axis corresponds to a pair of Pauli vectors
(45). For example, the poles of the z-axis correspond to |0⟩ and |1⟩,
respectively. The angle θ ∈ [0, π] is relative to the z-axis and the
angle φ ∈ [0, 2π) is relative to the x-axis. Any point on and inside
this sphere represents a valid state.

Multi-qubit states

For any meaningful quantum computation, a single qubit is not sufficient.
Larger qubit systems are necessary to facilitate complex quantum computa-
tions. An n-qubit quantum system is simply created by combining n individual
qubits together. The corresponding mathematical operation that is used for
combining such physical systems is the tensor product , e.g.:

|0⟩⊗n = |0⟩1 ⊗ |0⟩2 ⊗ . . .⊗ |0⟩n = | 0 . . . 0︸ ︷︷ ︸
n
⟩. (40)

For, n = 2 this is called a two qubit system. Such two qubit systems have four
computational basis states:

|00⟩ =

1
0
0
0

 , |01⟩ =

0
1
0
0

 , |10⟩ =

0
0
1
0

 , |11⟩ =

0
0
0
1

 . (41)

Any two-qubit state may be in a superposition of these four bases:

|ψ⟩ = α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩. (42)

This state also must fulfil the normalisation condition for it to be a physically
acceptable state:

|α|2 + |β|2 + |γ|2 + |δ|2 = 1. (43)

This can be extended to an n-qubit system analogously.
As qubits are two-state systems, similarly to spin systems, |0⟩ and |1⟩ are Pauli
eigenvectors. In the next section, the eigenvectors and values of the three
Pauli matrices are introduced, as they play a fundamental role in quantum
computing.

12

2.4.2. Pauli Operators/ Matrices

Pauli matrices play an import role not only in spin physics but also in quantum
computation. These matrices are Hermitian and unitary5 and given as:

X = σx =
[
0 1
1 0

]
, Y = σy =

[
0 −i
i 0

]
, Z = σz =

[
1 0
0 −1

]
. (44)

Note that the Pauli matrices, together with the identity span a basis for every
complex 2 × 2 matrix. They all share the same two eigenvalues, +1 and −1.
Their corresponding eigenvectors are:

|+⟩ = |x+⟩ = 1√
2

[
1
1

]
, |−⟩ = |x−⟩ = 1√

2

[
1
−1

]
, (45)

|i⟩ = |y+⟩ = 1√
2

[
1
i

]
, | − i⟩ = |y−⟩ = 1√

2

[
1
−i

]
, (46)

|0⟩ = |z+⟩ =
[
1
0

]
, |1⟩ = |z−⟩ =

[
0
1

]
. (47)

Note that the convention in the context of quantum computing is to refer to σx,
σy and σz as X, Y and Y respectively. Correspondingly, the eigenvectors are
denoted differently as well. None of these matrices commute with each other.
This can be condensely expressed with a single commutation equation6:

[σa, σb] = 2iεabc σc. (48)

A useful way to write the Pauli matrices is to write them in terms of in terms
of the computational basis, using the Dirac notation.

σx = |1⟩⟨0|+ |0⟩⟨1|, σy = i|1⟩⟨0| − i|0⟩⟨1|, σz = |0⟩⟨0| − |1⟩⟨1|. (49)

2.4.3. Quantum Gates

Quantum gates are unitary operators that map qubit states to qubit states.
They are the elementary operations of a quantum circuit. One important
difference from classical gates is the fact that quantum gates have to be re-
versible, since the gates are unitary and thus reversible [18].
A quantum circuit consisting of a sequence of quantum gates can be visualised
by a circuit diagram. In these diagrams, time flows from left to right and mul-
tiple qubits are stacked vertically. The order in which the operators operate
is, thus, also determined by this direction. For example, take one arbitrary
single qubit gate and a single-qubit gate A, a circuit could look like:

|α⟩ A |β⟩

While gates are, in principle, not limited in the number of qubits they act on,
most only act on one or two qubits. This is because every n-qubit unitary
can arbitrarily well-approximated by a sequence of single- and two-qubit gates
single- or two-qubit gate [18]. Moreover, there exist finite sets of quantum
gates, called universal gate sets, with which it is possible to represent any

5A matrix A is called unitary if and only if: A†A = AA† = 1.
6with ϵabc being the Levi-Civita symbol and using the Einstein summation convention

13

unitary operation up to any arbitrary precision [20]. Hence, such a universal
gate set is, in principle, sufficient for all computations.
Various prominent examples of single- and two-qubit gates are introduced in
the following.

Identity Gate

A trivial example for a gate is the identity gate. Mathematically, it is the
identity matrix 12×2 and does not alter the state on which it acts. For a single
qubit:

1 =
[
1 0
0 1

]
= |0⟩⟨0|+ |1⟩⟨1|. (50)

Pauli Gates

The Pauli matrices also can be used as gates because they are unitary as well.
All three of them rotate a given state along the corresponding axis by π on
the Bloch sphere.

X-gate / NOT-gate

The X-gate is also called the bit-flip gate because it maps |0⟩ to |1⟩ and |1⟩
to |0⟩. It is equivalent to the NOT gate from classical circuits [21].
X acts on |0⟩ and |1⟩ as follows:

X|0⟩ = (|1⟩⟨0|+ |0⟩⟨1|)|0⟩ = |1⟩, (51)
X|1⟩ = (|1⟩⟨0|+ |0⟩⟨1|)|1⟩ = |0⟩. (52)

Y -gate

The Y -gate interchanges |0⟩ and |1⟩ like the X-gate except for an additional
phase.
Y -gate acts on |0⟩ and |1⟩ as follows:

Y |0⟩ = (i|1⟩⟨0| − i|0⟩⟨1|)|0⟩ = +i|1⟩, (53)
Y |1⟩ = (i|1⟩⟨0| − i|0⟩⟨1|)|1⟩ = −i|0⟩. (54)

Z-gate

The Z-gate is also called the phase flip as it introduces a relative phase
between the computational basis states
Z-gate acts on |0⟩ and |1⟩ as follows:

Z|0⟩ = (|0⟩⟨0| − |1⟩⟨1|)|0⟩ = +|0⟩, (55)
Z|1⟩ = (|0⟩⟨0| − |1⟩⟨1|)|1⟩ = −|1⟩. (56)

Rotation Gates

The previous Pauli gates can only rotate a state by a fixed angle of π their
respective axis. To rotate a state by an arbitrary angle θ along an axis, the
Pauli rotation gates [21] may be used. These gates are generated by the
Pauli operators as exponential, as in equation (36).

14

RX-gate

The RX -gate rotates a state along the x-axis by θ. Using equation (36):

RX(θ) := e−i 1
2 θX = cos

(
θ

2

)
1− i sin

(
θ

2

)
X =

 cos
(

θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos

(
θ
2

) .
In particular, setting θ = π yields the X-gate up to a global phase −i:

RX(π) := ei π
2X =

[
0 −i
−i 0

]
= −iX. (57)

RY -gate

Analogously, the RY -gate rotates a state along the y-axis by θ.

RY (θ) := e−i 1
2 θY = cos

(
θ

2

)
1− i sin

(
θ

2

)
Y =

cos
(

θ
2

)
− sin

(
θ
2

)
sin
(

θ
2

)
cos

(
θ
2

) .
RZ-gate

The RZ-gate rotates a given state along the z-axis by θ:

RZ(θ) := e−i 1
2 θZ = cos

(
θ

2

)
1− i sin

(
θ

2

)
Z =

[
e−i θ

2 0
0 ei θ

2

]
(58)

When multiple rotations are performed, they can be combined into a single
gate using the Baker–Campbell–Hausdorff formula [18]. Which provides
a closed-form solution to the equation eAeB = eC , with A, B and C operators
with:

C = A+B + 1
2[A,B] + 1

12[A, [A,B]]− 1
12[B, [A,B]] + · · · (59)

When two rotations are performed along the same axis, for example theX-axis,
the angles are simply added up. Verifying this is straight forward due to the
commutation relation for the X Pauli operator (see eq. (48)), i.e. [X,X] = 0:

RX(θ)RX(φ)|∗⟩ =
(
e−i θ

2 Xe−i φ
2 X
)
|∗⟩ = e−i θ+φ

2 X |∗⟩ = RX(θ + φ)|∗⟩, (60)

with |∗⟩ being an arbitrary single qubit state.
The circuit diagram consequently is as follows:

=RX(θ) RX(φ) RX(θ + φ)

Hadamard gate

The so-called Hadamard gate H, creates an equal superposition of the com-
putational basis states.

H = 1√
2

[
1 1
1 −1

]
= 1√

2
(|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0| − |1⟩⟨1|) . (61)

15

In fact, this gate maps the |0⟩ to the |+⟩ state and the |1⟩ to the |−⟩. The
states |+⟩ and |−⟩ are introduced in section 2.4.2. Therefore, the Hadamard
directly maps the computational basis to the Pauli Y -basis (sometimes also
called the Hadamard basis).

H|0⟩ = 1√
2

[
1 1
1 −1

]
|0⟩ = 1√

2
|0⟩+ 1√

2
|1⟩ = |+⟩, (62)

H|1⟩ = 1√
2

[
1 1
1 −1

]
|1⟩ = 1√

2
|0⟩ − 1√

2
|1⟩ = |−⟩. (63)

Lastly, applying theH-gate twice will not alter the state. BecauseHH = 12×2.

H(H|0⟩) = H|+⟩ = |0⟩, (64)
H(H|1⟩) = H|−⟩ = |1⟩. (65)

CNOT-gate

In contrast to the other gates in this section, the CNOT-gate takes two qubits
as its input. The first qubit acts as the control qubit, the other as the target.
As the name suggest, the control qubit dictates how the target qubit is altered.
The control qubit remains unaffected and the X-gate is applied to the target
qubit if and only if the control qubit is in the |1⟩ state.

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (66)

For example, if the CNOT-gate acts on the state |11⟩:

CNOT |11⟩ = |1⟩ ⊗X |1⟩ = |1⟩ ⊗ |0⟩ = |10⟩ . (67)

The full effect of the CNOT-gate is listed in table 1. Lastly, this controlled
two-qubit gate operation can be generalised to the controlled-U gate:

CU =

1 0 0 0
0 1 0 0
0 0 U00 U01
0 0 U10 U11

 . (68)

This gate applies the unitary U in the same manner as the CNOT-gate applies
the X-gate. A tabular summary of the previously introduced gates can be seen
in appendix B.

Table 1: Table of the CNOT-gate acting on the computational bases states.
Before After
|00⟩ |00⟩
|01⟩ |01⟩
|10⟩ |11⟩
|11⟩ |10⟩

16

2.4.4. Measurements in Different Bases

Measurements are performed in the computational basis, which - by convention
- coincides with the Pauli-z basis, by default. In a circuit diagram this is
represented by the according measurement symbol. For example:

|ψ⟩ {0, 1}

By the postulates of quantum mechanics, such a measurement collapses the
quantum state to one of the computational basis states and produces one bit
of classical information, according to the collapsed state. Therefore, before
performing the measurements again, requires the re-preparation of that state.
Measurements result in either the 0 or 1 bit, depending on the measured state.
If an n-qubit system is measured like this qubit-by-qubit, a bit-string, {0, 1}n,
is produced. However, a different basis measurement can also be selected. Of
particular interest are the three Pauli bases. In order to measure in either the
Pauli X or Y basis in similar fashion, the state has to be transformed first.
Solving this problem is a basic one in linear algebra as it essentially boils down
to a basis transformation. For example, the Hadamard gate H maps the states
|0⟩ and |1⟩ following eq. (62) & (63). Applying the Hadamard gate the other
way around results in the wanted transformation:

|+⟩ 7→ |0⟩ (69)
|−⟩ 7→ |1⟩ . (70)

After this operation, the state |0⟩ is measured if and only if the quantum state
has previously been the |+⟩-state. As a consequence, measuring this state will
yield the standard bit-string {0, 1} as desired.
The measurement in the Pauli Y -basis can also be achieved with an additional
phase gate S. Hence, applying the right unitary transformation before mea-
suring allows for measurements in different bases. These unitaries are listed
in table 2.

Table 2: Unitary transformation for measurement in different bases.
Basis Unitary
Z 1

X S† H

Y H

with S† = (H
√
XH)†.

2.4.5. Variational Quantum Algorithms

Variational quantum algorithms (VQA) are one of many methods that aim
to utilise the currently available quantum hardware with all of its limitations.
These limitations range from the limited qubit number to the limited circuit
depths and general noise concerns [3, 18]. VQAs approach these limitations
by using an optimization-based method. The idea is to outsource the opti-
mization to classical computers, which interface with the quantum computer

17

via parameters of a parameterised quantum circuit.
VQAs may lead to a general quantum advantage on currently available NISQ
hardware . The proposed use-cases for VQAs are in quantum chemistry, e.g.,
finding ground states, combinatorial problems, or linear algebra problems, i.e.
solving large systems of linear equations [3]. A simple schematic overview of
a VQA can be seen in figure 3.

Parameterised
Quantum
Circuit

Classical
Computer

Hybrid Loop

Input

Output

Figure 3: Simple schematic of a variational quantum algorithm (VQA). The
inputs of a VQA are the Hamiltonian providing the cost function and
the ansatz (the layout of the parameterised circuit). The quantum
circuit prepares a quantum state to be measured repeatedly and the
classical computer in return calculates the next set of parameters
based on the chosen optimisation routine. The desired output in
our case should correspond to the set of parameters that minimises
the cost function, e.g., the ground-state of the Hamiltonian.

In order to define the problem instance for the VQA, a so-called cost function
C has to be defined. The purpose of the VQA is to minimise this cost function
by finding a set of parameters θ that minimises, i.e., to ideally find .

θmin = arg min
θ
C(θ). (71)

The cost function together with the parameter space makes up the cost land-
scape. Its dimension equals the number of parameters. A cost function, for
example, could be the expectation value of the given Hamiltonian or a spin
measurement. In this case, the landscape is a energy landscape. Finding a
global or local minimum in this energy landscape, essentially, is the task of
the VQA. The cost function in this case has the form [3]:

C(θ) = ⟨ψ0|Û †(θ)ÔÛ(θ)|ψ0⟩. (72)

with |ψ0⟩ being the initial input state for the circuit, Ô the observable (e.g.
Hamiltonian), Û(θ) a parameterised unitary, i.e., the parameterised circuit.
The parameterised circuit is typically represented by multiple layers of uni-
taries Ûi(θi) that multiply up to the whole circuit Û(θ) as seen in Figure 4.
Such unitary Û(θ) can be expressed as:

Û(θ) = Û(θ1) · Û(θ2) · . . . · Û(θL). (73)

18

The explicit form of each layer depends on the ansatz made. An initial state
|ψ0⟩ with a given ansatz Û(θ), i.e. the circuit, results in the parameterised
state |ψ(θ)⟩.

Figure 4: Parameterised circuit example circuit with L layers of unitaries.
Each layer Ûi(θi) depends only on a single parameter θi. Stack-
ing up these layers results in the unitary Û(θ). The blue box shows
an example circuit for a single layer which can at most depend on
θi. Figure taken from Ref. [3].

The classical computer then evaluates the value of the cost function from re-
peated measurements and applies a classical optimisation method. The task of
the classical computers is to choose the next set of parameters θ to navigate
downwards in the cost landscape. Subsequently, the hybrid loop repeats.
How the navigation is done depends on the method used for the optimiza-
tion routine. The most commonly used is the so-called gradient descent
method. Although there are more available methods, in this thesis, the gra-
dient descent method is the method of choice.

Gradient Descent

The gradient-descent method updates a set of parameters θ by using the gra-
dient of the cost function with respect to θ such that the updated direction
points to the direction in the cost landscape where the slope is the steepest.
This is done by setting a learning rate α and calculating the gradient at the
current point θk.

θk+1 = θk − α∇C(θk). (74)

Using equation (74), a classical computer calculates the next set of parameters
to navigate in the cost landscape. By doing so, (local) minima can be reached.
However, calculating the gradient of the cost function is not always analyti-
cally possible and one has to settle for approximative methods for the gradient
estimation. A method of calculating quantum gradients is the so-called simul-
taneous perturbation stochastic approximation (SPSA) introduced in
Ref. [22]. SPSA requires two circuit calls per gradient estimation, whereas
the parameter shift rule scales linearly with the number of circuit parameters,
making it advantageous for large circuits because of the constant scaling. The

19

SPSA method achieves this by estimating the cost function at θ + µ∆ and
θ − µ∆, where an element of ∆, ∆i is defined as:

∆i =
{

+1 with probability 50%
−1 otherwise

(75)

with i = {1, . . . , N}, N being the number of parameters and µ ∈ R a small
parameter.
The gradient is calculated by the following equation:

∇C(θ) ≈ C(θ + µ∆)− C(θ − µ∆)
2µ∆ . (76)

This method requires fewer samples for a gradient estimation, compared to
the parameter shift rule, as it only requires a constant of 2 measurements, see
Ref. [22] and appendix B.2. Especially for higher numbers of parameters, due
to the constant scaling of the SPSA method, compared to the 2n (n is the
number of qubits) scaling of other conventional methods.
For example, the gradient descent method on a one-dimensional energy land-
scape, thus having only one parameter θ, can be seen in figure 5.

θ

Energy

−α∇E(θk)
θmin

EG

Figure 5: Gradient descent on a one-dimensional energy landscape. The yellow
dot is at θmin and bears the ground energy EG of this energy land-
scape. On every purple dot, a measurement of the energy E(θk)
has been made. The next parameter θk+1 is calculated based on
the measured gradient ∇E(θk) from the previous step. By walking
stepwise through the landscape, with the right learning rate α, even-
tually an energy E(θk) ≈ EG (yellow dot) will be reached. In the
region near an extremum or saddle point, that is, where the gradi-
ent is small, the number of steps to advance further becomes larger.
This is shown by the purple dots being closer to each other near the
yellow dot.

Variational Quantum Eigensolvers

The most variant of VQAs is the so-called variational quantum eigensolver
(VQE). It is used to estimate ground-state eigenvalues and eigenstates of a
given Hamiltonian Ĥ [3]. In this case, the cost function (see eq. (72)) is given
by the expectation value of Ĥ with a parameterised state |ψ(θ)⟩:

C(θ) = ⟨ψ(θ)|Ĥ|ψ(θ)⟩ := E(θ). (77)

20

with E(θ) being the energy depending on the parameters θ. From now on, the
cost function will be called E(θ). Using the Rayleigh-Ritz variational method
the energy E(θ) is lower bounded by the ground state energy, i.e.

EG ≤ E(θ). (78)

The Hamiltonian for a VQE is usually decomposed as a sum of multi-qubit
Pauli operators (see sec. 2.4.2):

Ĥ =
∑

i

ciPi, (79)

with ci ∈ R and Pi ∈ {X,Y, Z,1}⊗n .
It is common to represent a Hamiltonian as a sum of Pauli operators, as these
are easily implementable. The typical procedure for a VQE can be seen in
figure 6.

Parameters
θk

Circuit
U(θk)

Gradient Estimation
&
Gradient Descent
θk+1 = θk − α∇E(θk)

Measure
E(θk)

Output
E(θk) ≈
EG

Hybrid Loop

Initial
Ansatz

Figure 6: Flow chart of a VQE. The circuit layout is set by the Ansatz, shown
in yellow. The dashed box corresponds to the hybrid loop in which
the quantum circuit and the classical optimiser work together. In
each loop, the circuit provides the classical optimiser the current
energy E(θk) from which it calculates the next set of parameters
θk+1. At that point, the loop continues with θk+1 as the new starting
parameters. The loop is based on figure 3.

21

3. Methods
This section provides an introduction to the empirical Bernstein stopping algo-
rithm (EBS) and the layout of the VQE (see sec. 2.4.5) used as a benchmark.
To that extent, first EBS itself and some modifications are introduced. These
modified algorithms are then compared against each other and also to the
Höffding’s bound (see eq. (15)). Secondly, we explain how to set up a VQE as
a benchmarking tool for EBS. This includes, in particular, the quantum de-
composition that yields a circuit representation for a unitary operator. Lastly,
we illustrate on how to interconnect EBS with the hybrid loop of an VQE

3.1. Empirical Bernstein Stopping (EBS)

Sampling is a resource-intensive task in quantum computing and machine
learning. In the case of quantum computing, the result of a computation
has to be read-off via a measurement. However, due to the fundamental na-
ture of quantum mechanics, any measurement projects the state into a single
outcome with a certain probability. Therefore, this process has to be repeated
to achieve an accurate result.
The naive approach arguably is to set a number of samples that can be acquired
for each estimate, this approach, however, does not provide any guarantees
for the produced estimate. Instead, it would be beneficial to have algorithms,
which control the sampling process based on set parameters and terminate
when a fixed accuracy of the estimate is reached.
One such algorithm is the empirical Bernstein stopping algorithm (EBS)
developed by Mnih et al. [15]. EBS is an adaptive stopping algorithm, as it
immediately processes the samples that are drawn. In particular, it calcu-
lates the running empirical variances. By employing the empirical Bernstein
inequality, eq. (19), this allows EBS to be used in cases where the variance
of the underlying probability distribution is not known, i.e., most practical
scenarios.
In the following section, first the concept of a (ϵ, δ)-stopping rule is introduced
followed by the base EBS algorithm, in both a relative error and absolute error
version. Secondly, an improvement to the base EBS algorithm is discussed and
compared to the base version. Lastly, a comparison to a non-adaptive sample
algorithm like Höffding’s bound is made.

3.1.1. (ϵ, δ)-Stopping Rules

A stopping rule S is a condition that when met terminates an algorithm.
In addition, we require a stopping rule to terminate the algorithm eventually,
regardless whether the condition is met. Mathematically, this can be expressed
as:

E[T (S)] <∞, (80)

with T (S) being the time the stopping algorithm terminates.
This condition formally requires that the algorithm terminates in a finite
amount of time. There are many ways to do so. However, the focus in this
thesis is on stopping rules that are constructed from concentration inequali-
ties. These are the so-called (ϵ, δ)-stopping rules.
An (ϵ, δ) stopping rule takes two parameters, δ the maximal tolerated prob-
ability of failure (1− δ is often called confidence) and ϵ the relative accuracy

22

that the returned estimate should at least have. Any stopping rule S that
satisfies the following condition is an (ϵ, δ)-stopping rule [15]:

P[|µ̂− µ| ≤ ϵ|µ|] ≥ 1− δ, (81)

with µ̂ the estimated expected value of a real-valued random variable given
as the return value of an algorithm and µ being the expected value. Any
stopping rule S that fulfils equation (81) ensures, with probability of at least
1 − δ, that when it terminates, the estimated expected value µ̂ will only be
within a relative error ϵ of the expected value µ:

|µ̂− µ| ≤ ϵ|µ|. (82)

If one considers an absolute error, one simply considers the following instead:

P[|µ̂− µ| ≤ ϵ] ≥ 1− δ, (83)
|µ̂− µ| ≤ ϵ. (84)

Henceforth, if not stated otherwise, accuracies in this thesis are considered
absolute.

3.1.2. Empirical Bernstein Stopping Rule

In the following, we demonstrate that the Bernstein inequality can be used to
create an (ϵ, δ) stopping rule. The detailed derivation can be found in on Ref.
[15].
Let F be the event in which the stopping rule fails, i.e., the algorithm stops
but the required accuracy is not met.

F = {|µ̂− µ| ≥ ϵ}. (85)

Further, define Tfailure as the time for F .
As Bernstein’s inequality (17), assumes the full failure provability δ at every
step t, the probability for the event F can be calculated by summing up all
time steps:

P[F] =
∞∑

t=1
P[F ∩ {t = Tfailure}

!
≤ δ. (86)

F

t3t2t1

...
...

...
...

ti−1 ti t∞

Figure 7: A more approachable representation of equation (86). F is repre-
sented by the red elliptical set and the areas created by vertical lines
represent disjoint subsets where ti = TFailure. The total probability
of F are all the times ti the algorithm terminates but fails to deliver
a return µ̂ that is within ϵ of the expected value µ, i.e., the sum of
the measures of all the subsets.

23

The idea is to define a sequence of partial failure probability {dt}. An element
dt of this sequence can be understood as the partial failure probability for the
segments in figure 7. Hence, the following inequality holds:

P[F ∩ {t = Tfailure}] ≤ dt. (87)

Following equation 86, the sequence {dt} must fulfil:
∞∑

t=1
dt ≤ δ. (88)

The author(s), Mnih et al. [15], recommend following choice of dt:

dt = c

tp
, (89)

with c = δ(p−1)/p and p > 1 as the optimal choice.
Further discussion of this choice can be found in Ref. [15].
The empirical Bernstein bound holds for every time t (17), which serves as a
useful lower-bound for each dt:

P[|Xt − µ| ≥ ϵ] ≤ 2 exp
(
− (tϵ)2/2
σ2

t +Rtϵ/3

)
≤ dt. (90)

This equation can be rewritten into a bound of similar form as equation (18):

|Xt − µ| ≤ ϵ ≤

√√√√2V t ln
(

3
dt

)
t

+
2R ln

(
3
dt

)
t

:= ct. (91)

This equation holds with probability of at least 1− dt.
Compared to the empirical Bernstein bound, see eq. (19), eq. 91 assumes a
partial failure probability dt instead of the full failure probability δ. The new
sequence {ct} is constructed in such a way that at any time step t an element
of the sequence ct is half the width of a 1− dt confidence interval [23].

3.1.3. Base Algorithm

The base form of the empirical Bernstein stopping algorithms (EBS), called
EBStopSimple, uses the previously introduced ct as an upper bound an
accuracy ϵ, i.e., the deviation of the empirical mean from the actual mean.
Henceforth, EBS will refer to any empirical Bernstein stopping algorithm,
including modifications.
The derivations above lack a stopping condition, the goal now is to use this
sequence ct (91) to construct one. Further details can be found in the Ref.
[15]. Assume that the algorithm stops at a time t if:

ct ≤ ϵ(|Xt| − ct), (92)

then the following also holds:

||Xt| − |µ|| ≤ ct ≤ ϵ(|Xt| − ct) ≤ ϵ. (93)

In the equation above, one can see that if the algorithm stops at the condition
in equation (92) the estimated Xt will be within a relative error ϵ of the real

24

expected value µ. The last inequality in equation (92) results in the stopping
criterion used for the EBS algorithm:

ct ≤
ϵ

1 + ϵ
|Xt| ≤ ϵ|Xt|. (94)

The following pseudocode algorithm uses the stopping criterion (94).

Algorithm 1 EBStopSimple
c0 ←∞
t← 1
while ct > ϵ|Xt| do ▷ equation (94)

Sample Xt

Update Xt

Update V t

Update ct ▷ equation (91)
t← t+ 1

end while
TStop ← t ▷ Time at which the algorithm terminates
µ̂← XTStop

return µ̂

This algorithm stops when the current expected value Xt is within ϵ of the
bound ct. Therefore, due to equation (93), the algorithm can be terminated
and produce a (ϵ, δ)-estimate. To convert the algorithm 1 from relative to
absolute accuracy, simply use equation (83) as the stopping condition. The
algorithm 2 is an adaptation of the EBSimpleStop algorithm that Mnih [23]
proposed using an absolute accuracy.

Algorithm 2 EBA
c0 ←∞
t← 1
while ct > ϵ do

Sample Xt

Update Xt

Update V t

Update ct ▷ equation (91)
t← t+ 1

end while
TStop ← t ▷ Time at which the algorithm terminates
µ̂← XTStop

return µ̂

This new algorithm is called EBA, the ’A’ represents for the absolute accuracy.
It behaves identically to the EBStopSimple algorithm, except that now an
absolute accuracy is used.
If, for example, one estimates µ = 2 and sets ϵ = 0.1, the resulting absolute
accuracy would be ±0.1. Whereas the relative accuracy depends on the mean,
i.e. ϵ|µ| = ±0.2. Importantly, a relative accuracy can cause EBS to not
terminate in the case where µ = 0. If |µ|ϵ → 0 then EBS has to sample
infinitely many times to achieve an relative accuracy of ±0, i.e., a perfect

25

estimate, resulting in EBS not terminating.
In general, it is wasteful to check the condition of the algorithm at every time
step t, this is because if the algorithm does not converge at time step a t it is
unlikely that it converges close to it. A method that uses this idea is content
of the next section.

3.1.4. Modifications on EBA

Like previously mentioned, it is a resource-draining method to check the con-
dition every time t, because if the condition is not met after t samples, it is
unlikely that it is met after t+1 samples. A logarithmic approach is an natural
ansatz to this problem, due to the O(1/

√
t) scaling of ct.

The idea is to collect a number of samples in a batch and then update ct.
Collecting samples in a batch also allows the empirical variance V t to further
converge to the actual variance, leading to a tighter bound of ct and thus a
faster stopping time.
To this extent Mnih et al. [15] introduces the variables k and tk. Although the
variable t still refers to the amount of samples that have been taken, k is the
number of times ct has been updated. The idea is to delay the update of ct

such that the batching of the samples can lead to a lower bound and therefore
to earlier stopping. While there are several options of how to explicitly im-
plement this, we only consider the so-called geometric sampling method. As
mentioned above, this method batches tk = ⌈βk⌉ many samples and checks the
stop conditions after the k-th time. Geometric sampling checks the condition
at most logβ(t) times, with t being the number of samples taken. Inserting
logβ(t) into dt (89) gives:

dt = c

tp
→ c

(logβ(t))p
. (95)

Considering that ct (see eq. (91)) is ∝ log(1/dt), a tighter bound of ct is
achieved by maximising dt. It is clear that if t → ∞ then 1/tp < 1/logβ(t)p,
hence geometric sampling gives a tighter bound. As a consequence, the tighter
bound ct leads to earlier stopping, i.e. fewer samples for an estimate.
The bound ct must also be modified to benefit from geometric sampling:

ctk
=

√√√√2V t ln
(

3
dk

)
t

+
2R ln

(
3

dk

)
t

. (96)

Note that the index for dk changed compared to equation (91), as this term
is updated now with exponentially increasing gaps. Algorithm 3 below is a
modification of the algorithm 2.

26

Algorithm 3 EBAGeo: geometric sampling
t← 1
k ← 0
while ctk

< ϵ do
Sample Xt

Update Xt

Update V t

t← t+ 1
if t > ⌊βk⌋ then

k ← k + 1
Update ctk

▷ equation (96)
end if

end while
TStop ← t ▷ Time at which the algorithm terminates
µ̂← XTStop

return µ̂

Figure 8: Visual presentation of tk = ⌈βk⌉. The distance between tk and tk+1
becomes exponentially larger.

t1t2 t3 t4

...
t∞

Geometric sampling introduces another parameter β, which to some degree
controls the stopping time of algorithm 3. Larger β tend to overshoot the
lowest possible stopping time up to the extent that the proposed stopping
time does not take advantage of the variance information anymore. This is
because the higher k becomes, the larger the difference is between ⌈βk⌉ and
⌈βk+1⌉. While this method reduces the stopping time, it also reduces the
chance to accurately hit the smallest valid stopping time Tmin without being
off by a factor of β.
Hence, the authors, introduce a modification to this problem in Ref. [23], so-
called mid-interval sampling. Using this modification, the algorithm checks
the condition additionally in between ⌈βk⌉+ 1 and ⌈βk+1⌉.

27

Algorithm 4 EBAGeoMarg: martingale-based anytime stopping
t← 1
k ← 0
while ct < ϵ do

Sample Xt

Update Xt & V t

t← t+ 1
if t > ⌊βk⌋ then

k ← k + 1
α← ⌊βk⌋/⌊βk−1⌋

x← −α ln (dk/3)
ctk ←

√
2V tx/t+ 3Rx/t

end if
end while
TStop ← t ▷ Time at which the algorithm terminates
µ̂← XTStop

return µ̂

Furthermore, the Python implementations of the previously introduced algo-
rithms may be found in the GitHub repository EmpiricalBernsteinAlgo-
rithm [24].

3.1.5. Effect of the Variance on EBS

The empirical Bernstein stopping algorithms generally perform better in low-
variance scenarios, as shown in figure 2.2.4, where the underlying bounds are
compared. In order to analyse the effect of the variance, the variables ϵ, δ and
the range R are kept constant while the variance is variable. One method of
keeping R constant while varying the variance is to group a l random variables
together, i.e., to consider their mean outcome as a new random variable. In the
case of a uniformly distributed random variable, the variance of the grouped
random variable thus scales with 1/l.
Let γl be the mean of l uniform(a, b) i.i.d. random variables Xi, i.e.

γl = 1
l

l∑
i=1

Xi, (97)

their variance then is as follows,

σ2(γl) = (b− a)2

12l . (98)

Equation (98) shows that with increasing l, the variance is decreasing. Doing
so allows us to create a benchmark of EBS while keeping ϵ, δ and the Range
R constant while decreasing the variance. A benchmark of EBA, EBAGeo,
EBAGeoMarg and Höffding’s bound can be seen in figure 9.

28

1 5 10 50 100 1000

103

104

Package of l Samples

N
um

be
r

of
Sa

m
pl

es

Höffding (15)
EBA [2]

EBAGeo [3]
EBAGeoMarg [4]

Figure 9: Effect of the variance on various sampling algorithms. Random vari-
ables are sampled from an uniform(a, b, l) distribution, with l being
the number of samples that have been batched together. Each bar
represents the average over 100 runs. Furthermore, β = 1.1 is set
for EBAGeo, while δ = 0.1 and ϵ = 0.01 are fixed for all algorithms.
Due to eq. (98), the variance decreases with l. However, Höffding’s
bound is constant for a set R as it does not depend on the variance
at all.

Figure 9 demonstrates how EBS, in general, needs fewer samples as the under-
lying variance of the random variables gets smaller. While Höffding’s bound
always yields a constant amount of samples, the EBS-based algorithms lead
to a decrease of the amount of samples. It is also clear that the EBAGeoMarg
algorithm outperforms the other two EBS variants. Furthermore, it seems like
EBAGeo overshot the actually stopping time by a factor ≈ βk, as discussed
in section 3.1.4, because of the stark contrast to EBAGeoMarg.
Even though figure 9 shows a clear decrease of samples taken by the algo-
rithms, the construction of γl increases the total number of samples taken by
a factor of l. For a fair comparison, figure 10 shows the same bar charts as in
Figure 9 but with the total number of samples taken adjusted by l accordingly.
It shows how higher values of l lead to higher total number of samples taken.
This is the case because the additional number of samples required to batch l
samples into one is higher than EBS can save by a decreased variance by 1/l.

29

1 5 10 50 100 1000
103

104

105

106

107

Package of l Samples

N
um

be
r

of
Sa

m
pl

es
×
l

Höffding (15)
EBA [2]

EBAGeo [3]
EBAGeoMarg [4]

Figure 10: Data from figure 9 but adjusted to the batch size l. This rep-
resents the actual number of samples that were used. Höffding’s
bound does not depend on variance, it requires more samples with
increased package sizes l.

3.2. Constructing a suitable VQE ansatz

An issue concerning VQE is that finding an ansatz is usually a difficult prob-
lem. When working with small numbers of qubits, one can find an ansatz by
using an algorithm that decomposes a unitary matrix into a sequence of quan-
tum gates from the universal gate set only. Such a quantum decomposition
algorithm decomposes a unitary 2n × 2n matrix into a sequence of X-gates
and fully controlled rotational gates that act on n qubits, resulting in a circuit
representation of that matrix [25]. The latter form a universal set of quantum
gates, which means that any unitary gate can be expressed in terms of that
set of gates.
These methods will be used in section 4.1 to construct a toy example from a
small Hamiltonian, for the purpose of creating benchmarks of EBA in a VQE
setting. Lastly, a quick overview of how EBA is integrated into a VQE is
presented.

3.2.1. Quantum Decomposition

Let Û ∈ C2n×2n be a unitary, i.e. Û† = Û−1, complex-valued matrix. Such
a unitary Û can be decomposed into a combination of X-gates and fully con-
trolled rational gates, using the quantum decomposition algorithm proposed
by Fedoriaka [25]. This decomposition is computationally expensive, as it
scales exponentially with the number of qubit n, i.e., O(4n). A Python im-
plementation of this decomposition algorithm can be accessed via the GitHub
repository in Ref. [26].
For example, let

Û = 1√
2

1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 −1 1

 , (99)

30

be a unitary matrix ∈ C4×4.
Using the decomposition algorithm on Û gives the following circuit:

|a⟩
X X

|b⟩
RZ(π) RY (−π

2) RZ(−π) RZ(π) RY (−π
2) RZ(−π)

with |a⟩ and |b⟩ being arbitrary states ∈ C4.
The circuit above is equivalent to the equation: Û |a⟩ = |b⟩.

3.2.2. Hamiltonian to Parametrized Circuit

We want to employ a quantum circuit to find the eigenvalues of a given Hamil-
tonian. In the following, using the quantum decomposition algorithm, we show
how to design the right circuit for this task. Usually, the input state for a n-
qubit circuit corresponds to a bit string b ∈ {0, 1}n, typically the state |0⟩⊗n .
In order to yield the eigenvalues of the Hamiltonian, the circuit Û should have
this basic property:

{|b⟩} Û {|φ⟩}

with {|φ⟩} being eigenstates of the Hamiltonian.
Now suppose a Hamiltonian Ĥ ∈ Cn×n. Its eigenvalue decomposition is given
as:

Ĥ = ÛΛÛ†
, (100)

with Û being a matrix with the eigenvectors of Ĥ as its columns and Λ being
a matrix with its eigenvalues on its diagonal. This provides a recipe on how
to obtain the eigenvalues from the quantum circuit from states corresponding
to bit strings alone:

λi = ⟨ψi| Ĥ |ψi⟩ = ⟨ψi|U︸ ︷︷ ︸
b∈{0,1}n

Λ U† |ψi⟩︸ ︷︷ ︸
b∈{0,1}n

!= ⟨b|Λ |b⟩ , (101)

with {|ψi⟩} being eigenstates of Ĥ and {λ} being the corresponding eigenvalue.
In other words, the unitary Û is chosen such that it maps a computational
basis state {|b⟩}, to an eigenstate {|ψ⟩} or Û{|b⟩} = {|ψ⟩}. This unitary Û
can be decomposed into a quantum circuit via the quantum decomposition
algorithm, see sec. 3.2.1. The next step is to parameterise this circuit Û by
adding rational gates to the circuit. While one naturally knows the optimal
parameters beforehand using this method, it nonetheless represents a practical
ansatz.

{|bi⟩} R(θ) Û {|ψi(θ)⟩}

{|bi⟩} Û(θ) {|ψi(θ)⟩}

with the gate R(θ) representing a black box of rotational gates acting on
different qubits and Û(θ) := R(θ)Û.

31

The state |ψi(θ)⟩ has the energy of λi(θ). By design, there exists a set of
parameters θopt such that:

|ψi(θopt)⟩ = λi(θopt) = λi. (102)

Using these results, one can create a parameterised circuit as a circuit ansatz
in order to estimate the ground state energy of the Hamiltonian. As men-
tioned above, this method is only feasible with small qubit numbers n, as the
quantum decomposition algorithm scales exponentially with n. However, for
the purpose of creating toy examples, it is satisfying to use two qubit systems.

3.2.3. EBA inside a VQE

In this thesis, our VQEs are using the gradient descent method and the SPSA
method for approximating the gradient of the cost function. Hence, multiple
energy measurements are required to:

• accurately estimate the ground state and

• approximate the gradient via SPSA.

For all the aforementioned energy measurements, EBA is used. More specif-
ically, the EBAGeoMarg algorithm (see alg. 4) variation, as it is the best
performing across all parameters choices (see section 3.1.5 and Ref. [23]). A
schematic overview of how the VQE will work can be see in figure 11.

Parameters
θk

Circuit
Û(θk)

Gradient Descent α
θk+1 = θk − α∇E(θk)

EBA ϵ, δ
→ E(θk)
SPSA µ

→ ∇E(θk)

Ground Energy
E(θG) ≈ EG

Hybrid Loop

Figure 11: Abbreviated version of the flow chart 6 for a VQE. We omit the
ansatz, see section 3.2. The blue boxes are part of the quantum
computer, while the red part is part of the classical computer. The
dashed box corresponds to the hybrid loop, in which the quantum
circuit and the classical optimiser work together. In each loop,
the circuit provides the classical optimiser with the current energy
E(θk) from which it calculates the next set of parameters θk+1. The
energy E(θk) is estimated using EBA, while the gradient ∇E(θk)
is estimated using the SPSA method. Using these measurements,
the loop restarts with θk+1 which are calculated using the gradient
descent method. The Yellow box shows the estimated ground en-
ergy E(θG). The loop is based on figure 3.

32

4. Results
In the following, the results of the benchmarks are presented. Firstly, a VQE
toy example is created using the procedure from the previous section. Based
on this toy example, the effect of the parameter ϵ on accuracy and the number
of samples is studied. In addition to the EBA algorithm, the Höffding’s bound
is also used for further comparisons.
Secondly, EBA is used to estimate the ground state energy of a H2 molecule
for varying bond lengths d. This results in a dissociation curve of H2 based
on the distance of the two hydrogen atoms. The focus of this experiment is
on reliably reaching the necessary accuracy for these kinds of estimates.
Henceforth, we fix the EBSGeoMarg related parameters p = 1.1 and β = 1.1.
Moreover, EBSGeoMarg alg. [4] is the EBS algorithm of choice. Furthermore,
the confidence 1−δ will not be analyzed in this thesis as one can always achieve
a higher confidence by repeating the experiment [14]. Henceforth, confidence
is set to 1− δ = 0.9 ≡ 90%.

4.1. Toy Example: Two Qubit System

Consider the Hamiltonian:

Ĥ = (Z ⊗ 1) + (1⊗X). (103)

This explicit Hamiltonian is chosen because it acts on two qubits and is there-
fore small enough to be used in the quantum decomposition algorithm. The
reason being that using this algorithm, Ĥ can be represented as a quantum
circuit, and subsequently be parameterised. Hence, if used in a VQE, it is
guaranteed that the solution/ground state is contained within it. Doing so
allows to faithfully construct a VQE for benchmark purposes.
Additionally, such Hamiltonian can easily be analyzed, i.e. eigenvector and
eigenvalues, making it straightforward to verify results. The explicit matrix
form of Ĥ, its eigenstates and eigenvalues, can be seen in the Appendix C.
This Hamiltonian acts on two qubits and has the eigenstates {|ψ⟩} with the
respective eigenvalues {|λ⟩}. Applying the methods of section 3.2 on Ĥ or
more specifically on its eigenvector matrix Û results in the example circuit in
section 3.2.1. The parameterised circuit based on Û can be seen below.

{|b⟩}
RY (θ1) X X

{|ψ(θ)⟩}
RY (θ2) RZ(π) RY (−π

2) RZ(−π) RZ(π) RY (−π
2) RZ(−π)

Parameters θ

with θ = (θ1, θ2).
This is only one of the many possible ways to parameterise a circuit. Because
the rotational gates have a periodicity of 4π a highly symmetric behaviour
of θ1 and θ2 is expected. In this particular choice of parameterization, the
optimal parameters are θ = (3nπ, 3mπ) with n,m ∈ N>0.
Using this circuit, one can construct a VQE by simply optimizing the param-
eters θ1 and θ2.
The ground state energy of this Hamiltonian is EG = −2 with the eigenstate
|ψG⟩ = 1/

√
2(|11⟩ − |10⟩) (see appendix C). This eigenstate and therefore this

33

eigenvalue is what the VQE should converge towards. Additionally, it does
not matter what bit string {|b⟩} is put into the parameterised circuit, as this
only affects the position of the ground state. Nonetheless, the state |00⟩ is
used as the initial state.
It is beneficial to visualise, e.g., the expected energy as a function of the pa-
rameters. The expected energy is given by, ⟨ψ(θ)| Ĥ |ψ(θ)⟩. The advantage of
having an efficiently solvable Hamiltonian is that one can calculate, e.g., the
expected energy analytically exact.
For instance, in the figure 12 the expected energy and variance of Ĥ are dis-
played as a function of θ (both with respect to |00⟩). Low variance regions
exist near the minima/maxima, while far from critical points the variance is
high. In those parameter regions of low variance, we expect EBS to signifi-
cantly require fewer samples for a given accuracy, see sec. 3.1.5.

−π 0 π
θ1

−π

0

π

θ 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(a) Energy

−π 0 π
θ1

−π

0

π

θ 2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b) Variance

Figure 12: Expected energy (a) and the variance (b) of Ĥ = (Z ⊗ 1) + (1⊗X)
with respect to Û(θ) |00⟩ as a function of the parameters θ =
(θ1, θ2). Both plots are plotted in an interval of θ1,2 ∈ [−3

2π,
3
2π].

The variance is exactly zero at each minima/maxima and saddle
point, while being maximal between them.

The gradient descent hyperparameters, i.e. the learning rate α and step size
µ, do not have a drastic effect on the overall convergence of the VQE, due to
the highly structured landscape of the chosen Hamiltonian Ĥ.
A run of the VQE refers to a sequence of energy estimations (using EBS)
terminating at the desired ground state energy, in this instance EG = −2.
At each step in the sequence, the algorithm determines the energy, its deriva-
tive and updates the parameters according to the gradient descent algorithm,
see sec. 2.4.5. A collection of runs is embedded in the energy and variance
landscapes, respectively, can be found in figure 13. Further, each VQE ini-
tialises to θ = (0, 0) and terminates if, |Ê − E| ≤ 0.2 is fulfilled. The jagged
motion that is observed is due to the SPSA method for the gradient descent.
SPSA allows an update only in 2L direction, with L being the number of pa-
rameters, hence here only 4 directions for an update are possible.
Close to a minima/maxima or saddle point the variance goes to zero causing
EBS to require fewer samples for a prediction with the same accuracy level.
We checked that the number of samples required by EBS as a function of
either variance or distance from the origin exhibits this expected behaviour
(data not shown).

34

−π 0 π
θ1

−π

0

π

θ 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(a) Energy

−π 0 π
θ1

−π

0

π

θ 2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b) Variance

Figure 13: Same plots as fig. 12 with multiple runs of the VQE embedded on
top. Each colour represents a different run while the black circles
represent an update step on that run. In total, there are 11 distinc-
tive runs displayed. These runs were created using the following
parameters: α = 0.25, µ = 0.1, ϵ = 0.2 and δ = 0.1. The seem-
ingly jagged motion of the path, is due to SPSA method. The high
symmetric nature of the energy landscape renders each of the four
surrounding minima equally likely to be converged to.

Further, one can gauge the overlap of the estimated state with the actual
ground state, using the fidelity F . The fidelity is defined as the absolute value
of the inner product of two states |ϕ⟩ and |φ⟩, that is:

F (ψ,φ) = ∥⟨ψ|φ⟩∥. (104)

By design, the fidelity is one if the states are the same and zero if they are
orthogonal. Therefore, if the fidelity is plotted over the iterations of a VQE,
it is expected to converge to 1 the same time the algorithm converges to the
ground energy. To this extent, in the figure 14, the fidelity F (ψG, ψ(θ)) and
energy as a function of the number of iterations are plotted.
It confirms the convergence to the correct state, i.e., as F (ψG, ψ(θ)) converges
to one, the energy converges to −2, indicating the correct estimation of the
ground energy (and state). The fidelity of the final VQE state and the actual
ground state is approximately F (ψG, ψ(θopt)) ≈ 0.995.

35

0 10 20 30 40
Number of VQE Iteration

0.0

0.2

0.4

0.6

0.8

1.0

F
id

el
it

y
F

(ψ
G
,ψ

(θ
))

Fidelity

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

E
n

er
gy
Ê

Energy

Figure 14: This figure shows a plot of the fidelity F (ψG, ψ(θ)) and the es-
timated energy Ê as a function of the number of VQE update
iterations. A dot represents the fidelity or energy, while the lines
connecting the dots are only included for visual guidance. While
the Fidelity convergence to one, the energy converges to -2, i.e. the
ground state energy.

4.1.1. Effect of ϵ on Actual Accuracy and Success Probability

The parameter ϵ has the strongest influence on the behaviour of EBS. There-
fore, analysing it is crucial for any application of EBS. ϵ, in this case, is the
absolute error or accuracy that the (ϵ, δ)-estimated of EBS has. A lower value
of ϵ, meaning higher accuracy, results in EBS requiring more samples to attain
said accuracy. However, during our analysis, we noticed that EBS usually pro-
duced estimates with a higher accuracy than the minimum required accuracy
ϵ.
This can be seen in figure 15, where we show the actual accuracies observed
during the VQE optimization for various accuracies ϵ with which EBS has
been initialised. To that extend, for each ϵ 100 VQE runs are conducted and
displayed together.
They show that EBS effectively returns an estimate of higher accuracy than
the required level ϵ. Moreover, this effect is more pronounced for higher accu-
racies. In addition to this higher measured accuracy ϵ̃, one can see that even
though the confidence probability 1− δ = 90% is relatively high, the resulting
empirically measured confidence is usually higher. This effect is increased for
higher values of ϵ.

36

10−6

10−3

100

|Ê
−
E
|

ε = 0.01 1− δ̃ = 0.917

10−6

10−3

100
ε = 0.03 1− δ̃ = 0.956

10−6

10−3

100

|Ê
−
E
|

ε = 0.05 1− δ̃ = 0.977

10−6

10−3

100
ε = 0.1 1− δ̃ = 0.992

−2 −1 0 1 2
Energy E

10−6

10−3

100

|Ê
−
E
|

ε = 0.15 1− δ̃ = 0.994

−2 −1 0 1 2
Energy E

10−6

10−3

100
ε = 0.2 1− δ̃ = 0.999

Figure 15: Distance/ actual accuracy |Ê − E| as a function of the analytical
energy E for different values of ϵ, with Ê being the estimated en-
ergy. The red dashed line is the corresponding value of ϵ. Each
dot is a single step across 100 runs of the VQE. 1− δ̃ refers to the
measured confidence, i.e., P[|Ê−E|] ≤ ϵ. Following parameters for
the VQE were used: α = 0.25, µ = 0.1 and δ = 0.1. The actual
accuracy |Ê−E| is usually much below the required accuracy level
ϵ (red dashed line). While there are estimates that are above the
red line, for all ϵ, this is within the set 1 − δ confidence. Close to
the eigenvalues 2 and −2 (energy of the initial parameters/ ground-
state energy), the accuracy increases significantly, as the variance
there vanishes.

In figure 15 only a few data energy measurements fail to reach the required
accuracy and, thus, lie above above the red dashed line. However, these esti-
mates that are not within ϵ of the actual energy value are well within confidence
1 − δ. These higher measured accuracies are due to EBS only guaranteeing
that an estimate deviates at-least ϵ from its actual mean.
The influence of the parameter δ is not analysed here, as one can always
achieve a higher confidence by repeating the experiment n times. This leads
to a decrease of δ as the potential failures get exponentially decreased [14].

4.1.2. Effect of ϵ on Sample Complexity

Increasing the accuracy ϵ naturally requires more samples to achieve that ac-
curacy. In settings where a certain accuracy is required, but the resources
are limited, e.g., hybrid quantum algorithms, reducing the amount of samples
while keeping the accuracy high is crucial. From a practical standpoint, arbi-
trary amounts of measurement rounds are just not feasible. Hence, a sample
limit of is 105 set. A sample limit is a simple method to structure the sam-
pling process; if it is reached, it can be assumed that the algorithm does not
converge to the ground state. However, the EBAGeoMarg algorithm does not
reach this sample limit for the values chosen for ϵ in this benchmark. We vi-
sualise the dependency between empirical variance and the resulting number

37

of samples taken by EBS in fig. 16.

101

104

ε = 0.01

101

104

ε = 0.03

101

104

N
o.

M
ea

su
re

m
en

ts
N ε = 0.05

101

104

ε = 0.1

0.0 0.5 1.0 1.5 2.0

Empirical Variance V

101

104

ε = 0.15

0.0 0.5 1.0 1.5 2.0

Empirical Variance V

101

104

ε = 0.2

Figure 16: This figure shows the amount of samples EBS used, as a function
of the estimated variance for different values of ϵ. The dashed line
corresponds to tmin given by Höffding’s bound from eq. (16). Each
dot is a single step across different runs of the VQE with the same
parameters. EBA requires fewer samples than Höffding’s bound
across all settings of ϵ and across the whole variance spectrum.
The data used in these plots are the same as in figure 15. For the
EBA variation, EBAGeoMarg alg. [4] was used, as it is the best
performing.

In addition, EBS is benchmarked against the sample complexity provided by
Höffding’s bound tmin (see eq. 16). For a set value of ϵ, δ and R, tmin is
constant and therefore non-adaptive to the empirical variance of the samples.
We notice that EBS yields the same accuracy for fewer samples, over all ϵ and
variance regimes, as Höffding’s bound. As the variance across all regimes is
always smaller than the range R = 4, we expect EBS to perform as it does.
The EBSGeoMarg alg. [4] provides further improvements beyond the variance
advantage as well, see 3.1.4.
For a clearer picture of how ϵ influences the amount of samples required for a
single full VQE run, one can plot the averaged amount of samples per run as
a function of ϵ. Such a plot can be seen in figure 17.
Clearly there exists a crossover point for EBA and EBAGeo with respect to
the non-adaptive Höffding’s bound, but not with EBAGeoMarg. Addition-
ally, EBAGeoMarg, being the best performing version of EBA, has a signif-
icantly decreased sample complexity than the EBS variations and Höffding’s
bound. This behaviour is expected as shown in section 3.1.5. Henceforth,
only EBAGeoMarg is used when using an EBS algorithm, as it is the best
performing EBS algorithm [23].

38

10−210−1

Accuracy ε

103

104

105

N
o.

M
ea

su
re

m
en

ts
N

EBAGeo

EBAGeoMarg

EBA

Höffding’s Bound

Figure 17: Sample complexity for EBS modifications and Höffding’s bound.
Both axes scale logarithmically. The displayed data is the mean of
the number of samples, over 100 VQE runs, i.e., across all variance
regimes as well. Each run is identical as the same predefined path is
travesed each time. The data is the same as in figure 16. Each dot
represents data of: EBA [2] (blue), by EBAGeo [3] (purple) and by
EBAGeoMarg [4] (green). The dashed black line is the number of
measurements given by tmin, see. eq. (16). The respective coloured
lines (excluding dashed lines) are added for visual guidance and do
not represent any data.

750 1000 1250 1500 1750 2000 2250
Average No. Samples per Run

0

5

10

15

20

25

30

F
re

qu
en

cy

Figure 18: Histogram of the mean number of samples per VQE step. The green
data is generated using the EBAGeoMarg algorithm [4], while the
dashed line represents the constant number of samples given by
Höffding’s bound (see eq.(16)). There are 100 runs sampled using
following parameters: ϵ = 0.05, δ = 0.1, α = 0.25 and µ = 0.1.

39

EBAGeoMarg requires significantly fewer samples for a single energy mea-
surement across all variance settings and accuracy values ϵ than the constant
sample budget given by Höffding’s bound. Not surprisingly, figure 18 shows
that EBAGeoMarg also requires less samples per run overall than Höffding’s
bound.
The variation of the stopping time, from using EBAGeoMarg, can be partially
attributed to the SPSA method that was used. This method uses a randomly
chosen direction for the gradient estimation, which then translates to random-
ness in the path taken. Most importantly, figure 18 shows the influence of the
variance on EBS and Höffding’s bound.

4.2. Dissociation Curve of H2

While the toy example from the previous section serves as a proof of concept
of EBS’ ability to reduce the number of samples required in a VQE setting,
the question is now if this holds true for more practical applications. A real-
istic application for a VQE is, for example, solving the electronic structure
problem.
The electronic structure problem is concerned with how the energy of a molecule
depends on the specific configuration of the electrons. Before one can solve
such a problem on a quantum computer, some preparation has to be per-
formed. Firstly, the molecular Hamiltonian has to be approximated using the
Born-Oppenheimer approximation, as for bigger molecules it is not analyt-
ically solvable. Secondly, the second quantisation is applied, such that the
Hamiltonian is in terms of fermionic operators (creation/ annihilation opera-
tor). Lastly, using a fermion-qubit mapping results in a Hamiltonian that is
in terms of Pauli operators and can be used in quamtum computers. More
details can be found in Ref. [27]. A flowchart of this process is shown in figure
19.

Real Space
Hamiltonian

Born-
Oppenheimer

Approximation

Second
Quantisation

Fermion-Qubit
Mapping

VQE

Classical Preparation

Figure 19: Flowchart for preparing a electronic structure problem for a VQE.
Adapted from Ref. [27].

In this section, we look at such a electronic structure problem in the case
of the H2 molecule. The energy of the H2 molecule depends on the bound
length d, i.e. the distance between the two hydrogen atoms. The according
Hamiltonian [27] is given as:

Ĥ = g11+ g2Z0 + g3Z1 + g4(Z0 ⊗ Z1) + g5(Y0 ⊗ Y1) + g6(X0 ⊗X1), (105)

with {gi} being a parameter that maps to a particular bond length d. These
parameters are tabulated in appendix D.
The corresponding ansatz [27] for this problem is as follows:

40

|01⟩
RY (π/2) −RX(π/2)

{0, 1}2

−RX(π/2) RZ(θ) RY (π/2)

This circuit implements the unitary Û(θ) = exp{−iθX ⊗ Y } as it always con-
tains the ground-state of the Hamiltonian (105) [27].

4.2.1. VQE run for fixed d

The goal is to estimate the energy of the H2 molecule by estimating the Hamil-
tonian at certain bond lengths d. To this extent, an exemplary VQE run for
d = 0.75Å is shown first. The corresponding set of coefficients, {gi}, can be
read from appendix D.
In figure 20, a VQE run for d = 0.75Å can be seen. The clusters of green dots,
i.e. the energy estimates, appear to due to the SPSA method. Furthermore,
some variance of the energy for a certain θ is to be expected and is controlled
by the estimation promise of EBA.
Here, we chose ϵ = 0.01, δ = 0.1, α = 0.1 and µ = 0.1. Running this VQE for
an array of bond lengths d gives the energy curve of the H2 molecule based
on the bond length. However, this exemplary VQE run serves as an analysis
tool to assess the quality of EBS.

−1.6−1.4−1.2−1.0−0.8−0.6−0.4−0.2
θ

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

E
n

er
gy

(H
ar

te
e)

EBAGeoMarg

Analytical

Ground Energy

Figure 20: Typical VQE run of H2 molecule for a bond length d = 0.75Å. The
green dots are the energy estimates made with the EBAGeoMarg
algorithm [4]. Additionally, the expected energy for a particular
parameter θ is displayed here as a black line, while the ground
energy is represented as a red dashed line. This figure represents
100 VQE runs with an initial starting parameter of θ0 = −0.1.
The measurement strategy, in this case, is to measure each non-
commuting term individually and combine them to one estimate
(see. sec. 4.2.2). Note that the x-axis is inverted, so that the VQE
optimises towards the right.

41

4.2.2. Comparing Measurement Strategies

In the section disccusing the toy example (sec. 4.1), the Hamiltonians terms
(eq. (103)) commute with each other, allowing simultaneous measurements of
each term and, thus, a direct measurement of the energy. This is generally not
the case. Already for the H2-VQE example above, the terms of Hamiltonian
(eq. (105)) do not all commute with each other. This opens up several pos-
sible measurement strategies. In the following, the goal is to find a suitable
measurement strategy for this problem instance.
After inspecting the few terms in eq. (105), one suitable strategy consists of
measuring once in three different Pauli bases, as indicated in table 3. In order
to obtain the energy subsequently, the intermediate results have to be summed
up.

Table 3: Transformations for Ĥ (see eq. (105))
i-th Term Ĥi Measurement Basis

1 1 None (offset)
2 Z ⊗ 1
3 1⊗ Z ZZ
4 Z ⊗ Z
5 Y ⊗ Y YY
6 X ⊗X XX

Because the terms Ĥ2,3,4 do commute, only one measurement is needed in the
computational basis. For terms Ĥ5 and Ĥ6, one measurement each in the ac-
cording basis is made. This results in a total of three measurements that are
needed for a single estimate. Henceforth, we refer to this method as the naive
method. A summary of the terms of the H2-Hamiltonian and their respective
measurement basis, can be seen in table 3.
A measurement in the ZZ basis, here, refers to measuring the first and the
second qubit in the computational basis. For measurements in the XX and
Y Y , a unitary basis transformation, as shown in table 3 has to be applied to
each measured qubit.
Another measurement strategy is the so-called L1 sampler, introduced by Ar-
rasmith et al. [28]. The L1-sampler only requires one measurement per esti-
mate, regardless of the number of Hamiltonian terms. The aforementioned, is
facilitated by introducing a random sampling process that selects a Hamilto-
nian term, such that the term with the largest coefficient in absolute values is
the one most likely to be sampled and measured. Each Hamiltonian term is
drawn with the probability, as follows:

pi(d) = |gi(d)|
∥g(d)∥1

, (106)

with ∥g(d)∥1 = ∑N
k=1 |gk| and N being the number of terms in the Hamilto-

nian.
However, this sampling procedure increases the variance of the estimator,
hence it is unclear if this method ultimately reduces the required number
of shots for an accurate estimation.
In general, it is unclear which measurement strategy is suitable when used in
conjunction with EBS. Hence, we benchmark both estimation schemes in the

42

optimization of an VQE for the H2-Hamiltonian, see eq. 105. In particular, we
track the empirical variances and the corresponding measurement rounds dur-
ing the optimization. This effect can be seen in 21. The variance, estimated
by the L1-sampler, does not converge to zero as the unbiased variance does,
which is mirrored in the number of measurements needed for this method.
As can be seen in figure 21, over a whole VQE optimisation run, the naive
method requires fewer samples in total than the L1-sampler. While the L1-
sampler requires 4.2 × 105 samples total, the naive method only requires
2.9 × 105 samples, i.e., saving around a third of the measurement repetitions
to provably reach the same accuracy.
While this generally might not be the case, for this particular problem, the
naive method is the preferable measurement strategy as the L1-sampler signifi-
cantly increased the variance across all regimes. Henceforth, the naive method
is used as the measurement strategy, as it is optimal for this particular prob-
lem.

1× 105

2× 105

3× 105

N
o.

M
ea

su
re

m
en

ts
N Naive Sampler

L1-sampler

−1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2
θ

0

1

2

E
m

p
ir

ic
al

V
ar

ia
n

ce
V

Figure 21: Empirical variance V and the number of measurements N , as a
function of the optimisation parameter θ. The red dots (line in-
cluded as visual aid) correspond to the naive method, while the
green dots correspond to the L1-sampler. For the energy and vari-
ance estimation the EBAGeoMarg algorithm 4 is used with a re-
spective measurement method. Following parameters for the VQE
are used: α = 0.1, µ = 0.1, δ = 0.1 and ϵ = 0.01. Additionally, the
parameters {gi} correspond to a bond length d = 0.75Å and can
be seen in appendix D. Note that the x-axis is inverted, such that
the VQE optimises towards the right.

4.2.3. Effect of ϵ on Actual Accuracy and Success Probability

Quantum chemistry problems require a certain accuracy, thus the scaling of
the sampling complexity based on the parameter ϵ is of importance. Similarly
to the analysis of the toy example in section 4.1.1, the effect of the accuracy
parameter ϵ on the empirically measured accuracy and confidence is analysed.
To that extent, the VQE for H2 is run for a fixed bond length d = 0.75Å with

43

variable values of ϵ as input for the EBS scheme.
Figure 22 shows that EBS returns an estimate below the required accuracy
with an empirical probability of at least 1− δ = 0.9 of the times. Likewise to
the toy example, a significantly higher accuracy than ϵ is observed. This effect
is more pronounced the higher the accuracy is, or the lower ϵ is set. Further
analysis on this effect is the subject of the following section.
As mentioned before, this is to be expected, as EBS in general has overhead
reserved to fulfil the guarantees of an (ϵ, δ)-estimate. Nonetheless, the con-
fidence parameter δ = 0.1 requires EBS to produce an ϵ-accurate estimation
with empirical probability of around 10%. Again, the confidence 1− δ is not
compared here, as one can always achieve higher confidences by repeating the
experiment n times. This leads to a decrease of δ as estimates are deluded
with more (ϵ, δ)-estimates [14].

10−7

10−3

|Ê
−
E
|

ε = 0.001 1− δ̃ = 0.702

10−7

10−3

ε = 0.01 1− δ̃ = 0.890

10−7

10−3

|Ê
−
E
|

ε = 0.03 1− δ̃ = 0.969

10−7

10−3

ε = 0.05 1− δ̃ = 0.984

−1.0 −0.5 0.0
Energy E

10−7

10−3

|Ê
−
E
|

ε = 0.1 1− δ̃ = 0.997

−1.0 −0.5 0.0
Energy E

10−7

10−3

ε = 0.15 1− δ̃ = 0.998

Figure 22: This figure shows the distance/ accuracy |Ê − E| as a function of
the analytical energy E for different values of ϵ, with Ê being the
estimated energy. The red line is the corresponding value of ϵ. Each
dot is a single step of various runs of the VQE. 1− δ̃ refers to the
measured confidence, i.e., P[|Ê| − E|] ≤ ϵ. Following parameters
for the VQE are used: α = 0.1, µ = 0.1 and δ = 0.1. In addition,
we use ϵ = {0.001, 0.01, 0.03, 0.05, 0.1, 0.15} and the EBAGeoMarg
algorithm [4]. The actual accuracy |Ê−E| is usually below the set
accuracy ϵ (red dashed line).

4.2.4. Effect of ϵ on Sample Complexity

Especially in the context of quantum chemistry, the accuracy ϵ is of impor-
tance as a certain accuracy is always required for further calculations. Again,
we fix the bond length d = 0.75Å while varying over an array of ϵ, to analyse
how EBS compares to the non-adaptive Höffding’s bound.
In figure 23 the number of measurements, as given by EBS and tmin, can be
seen as a function of the empirical variance intervals. A similar behaviour as
with the toy example in section 4.1 can be observed here. EBS requires more
samples in higher variance regimes but always less than the constant tmin pro-

44

vided by Höffding’s bound over all variance regimes. Note that the highest
variance in this case is ≈ 0.6, while the range is R = 3.0636. Hence, following
prior analysis, see sec. 2.2.4, EBS is expected to perform better.
Additionally, an artefact of the EBAGeoMarg [4] algorithm can be seen where
the number of measurements is constant for some variances. This is due to
the fact that these algorithms build up an overhead by virtue of the geometric
sampling procedure, see sec. 3.1.3.
Similar scaling in figure 24, for higher accuracies the difference between EBS
and Höffding’s is increasing. These differences, which correspond to the mea-
surement savings, are significant even for the lowest accuracies. In these set-
tings, EBS manages to decrease the measurement load by up to two orders of
magnitude.
Keeping in mind that in the context of actual quantum hardware, samples
are a valuable resource, and minimising the amount of measurements, i.e., the
samples, is always of benefit. This effect is further quantified by in figure 24.
The scaling of EBS (EBAGeoMarg [4]) clearly outperforms Höffding’s bound,
i.e., the discrepancy between the two bounds only increases with higher accu-
racy levels ϵ. This scaling behaviour is expected following the analysis of the
respective bound in section 2.2.4 and Ref. [23].

102

105

ε = 0.001

102

105

ε = 0.01

102

105

N
o.

M
ea

su
re

m
en

ts
N ε = 0.03

102

105

ε = 0.05

0.0 0.2 0.4 0.6

Empirical Variance V

102

105

ε = 0.1

0.0 0.2 0.4 0.6

Empirical Variance V

102

105

ε = 0.15

Figure 23: Amount of samples EBS uses, as a function of the estimated vari-
ance for different values of ϵ. The dashed line corresponds to tmin
given by Höffding’s bound from eq. (16). Each dot is a single step
of various runs of the VQE initialised with the same parameters.
EBA requires less samples than Höffding’s bound across all set-
tings of ϵ and across the whole variance spectrum. The data used
in these plots is the same as in figure 22. For the EBA variation
EBAGeoMarg is used, as it is the best performing. For these plots
the same data as in figure 22 is used.

45

10−310−210−1

Accuracy ε

102

103

104

105

106

107

N
o.

M
ea

su
re

m
en

ts
N

Fit: A/εc

EBAGeoMarg

Höffding’s bound

Figure 24: Number of measurements as a function of accuracy ϵ. Here,
EBAGeoMarg [4] in green (dots) and tmin (16), in black (dashed
line) are compared. Each data point of EBAGeoMarg, represented
as a point, is averaged over 100 distinct VQE runs. Furthermore,
the green line is fitted to the EBAGeoMarg data points, according
to A

ϵc with A = 13.83 and c = 1.31. Furthermore, the x-axis is
inverted so that this plot reads from right to left, i.e., the accuracy
increases to the right. Note that EBAGeoMarg scales better with
increasing accuracy, as compared to Höffding’s bound, where c = 2.
For this plot, the same data as in figure 22 is used.

4.2.5. Dissociation Curve

Running a VQE for an array of bond lengths d, e.g. as in section 4.2.1,
gives a (total) energy curve of the H2 molecule depending on the distance
of the two hydrogen atoms. Each energy measurement is made using EBS
(EBAGEoMarg [4]) and therefore an accuracy of ϵ with the confidence 1 − δ
is guaranteed.
Such an energy curve for H2 can be seen in figure 25. Here, the chosen circuit
ansatz faithfully reproduces (after optimization of its parameter) the correct
energies at all bond lengths up to an accuracy level ϵ = 0.01.
Figure 25 also shows the scaling of EBS with the range of the energy and
therefore of the samples. As the range of the random variables depends on the
bond length d, or more specifically the corresponding parameters {gi}, EBS
requires less samples for certain bond lengths. Note that despite the fact that
Höffding’s bound is also depended on the range and a similar downward trend
can be seen, EBS provides a better bound over all d. This is to be expected,
as EBS performs better over all variance regimes (see figure 23).
Additionally, the number of measurements averaged over a VQE run decreases
with d. This is due to the range also decreasing with d, as EBS is dependent
on the range due to the empirical Bernstein bound (see eq. (19)). The range
R for different bond lengths d is calculated as follows:

R(d) = 2∥g(d)∥1 → E(d) ∈ [−R(d)/2,R(d)/2]. (107)

46

Additionally, the number of iterations the VQE needs is fluctuating due to
constant hyperparameters for the gradient descent and a constant starting
parameter. By optimising these parameters, one could achieve a reduction in
measurements by virtue of shorter VQE runs. However, parameter optimisa-
tion is not the focus of this thesis.
Furthermore, the Python code for the VQE simulation can be found in the
GitHub repository EmpiricalBernsteinAlgorithm [24] as an application
for EBS.

−1.0

−0.5

0.0

E
n

er
gy

(H
ar

te
e)

EBAGeoMarg

Höffding’s Bound

Analytical

Error

104

105

N
o.

M
ea

su
re

m
en

ts

0.5 1.0 1.5 2.0 2.5

Bond Length d (Ångstrom)

2

3

4

5

R
an

ge
(H

ar
te

e)

Figure 25: This plot shows the H2 energy curve as a function of the bond length
d, alongside with averaged number of measurements over a VQE
run and the range of the energy depending on d. The coefficients
{gi} are tabulated in appendix D. For the energy estimation (green
dots) (EBAGEoMarg [4]) is used with accuracy ϵ = 0.01 and δ =
0.1. The red crosses correspond to the number of measurements
given by tmin (see eq. 16).

47

5. Conclusion
In this thesis, we explore the use of the empirical Bernstein stopping (EBS)
algorithm as a method to reduce the sample complexity in hybrid quantum
algorithms. More specifically, EBS is used inside a VQE, where it estimates
the desired ground state energy as well as energies at different parameters for
the gradient estimation. In particular, EBS is used to obtain energy estimates
while also provably providing an estimate with accuracy ϵ with a confidence
of 1− δ.
To this extent, firstly a toy example with a simple Hamiltonian is constructed
using methods that yield a quantum circuit that diagonalizes the Hamiltonian.
Consequently, the resulting ansatz contains the solution to our problem, i.e.
the lowest eigenvalue of the Hamiltonian, as it is analytically equivalent to the
Hamiltonian. EBS then is used to estimate the energy at each VQE step as
well as its gradient that is needed for the optimisation method used. In the
case of the toy example, EBS reduces the sample complexity, i.e. reduces the
number of measurements required for an accurate energy estimation.
Surprisingly, EBS managed to outperform the non-adaptive Höffding’s bound,
not only in low variance regimes but, somewhat surprisingly, also over a whole
VQE optimisation run (see section 4.1.2). Additionally, in section 4.1.1, the
measured accuracy matches the required accuracy ϵ with confidence 1− δ.

As EBS performs well above our expectations in the toy example (sec. 4.1),
the next step involves an application of quantum chemistry. In this thesis, we
chose to solve the electronic structure problem for the H2 molecule using an
ansatz used by O’Malley et al. [27]. In contrast to our constructed ansatz for
the toy example, the ansatz for the H2 molecule is a physically motivated one
but nevertheless just an ansatz. This problem required a closer look at the
specific measurement strategy, as the Hamiltonian contains non-commuting
terms that necessitate multiple measurements for a single estimate. To this
extent, the L1-sampler, proposed by [28], is compared with a naive method,
as it allows an energy estimation to be made using only a single measurement.
The naive method proves to be more efficient in this case as the L1-sampler
increases - due to the additional sampling routine - the estimator’s variance
which, in turn, increases the number of measurements needed for an energy
estimation.
Analysis of the sample complexity and accuracy of the estimates (section 4.2.3
& 4.2.4), again, shows that EBS does not only uphold its guarantees but also
does so by utilising fewer measurements as compared to Höffding’s bound.
A tangible comparison between EBS and Höffding’s bound is summarised in
figure 24, where the EBS clearly performs better. Using EBS for all required
energy measurements, the energy curve of a hydrogen molecule, depending on
the bond length d, is presented in figure 25 as the concluding result.
The conducted simulations of a hydrogen molecule and a toy example have
shown the strengths of EBS and its modifications in the context of varia-
tional quantum algorithms/ eigensolvers and quantum computing in general.
As measurements are an integral part of all quantum computing applications,
these results are promising for other applications outside of VQAs as well.

48

6. Outlook
Both the toy and quantum chemistry example and the electronic structure
problem for H2, prove that one can utilise the adaptive stopping algorithm
EBS, to reduce the measurement effort. This outperforms the conservative
Höffding’s bound which readily serves as a benchmarking tool. While the H2
molecule provides a more complex and realistic problem, it is, nevertheless,
a two-qubit problem, i.e., it can easily be solved classically as well as ana-
lytically. It is generally not clear which particular ansatz or measurement
strategy is the optimal one for quantum chemistry problems. The behaviour
of EBS for larger systems and more complicated Hamiltonians is still unclear,
as the measurement strategy heavily influences the energy or variance estima-
tor. Moreover, the results of these simple problems suggest similar properties
for more involved problems.
Additionally, the simulation of the quantum computer for these experiments
did not include noise simulation. It is again unclear how noise influences the
energy and variance estimator and how large the measurement overhead then
is. More specifically, it is unclear if EBS will keep its advantage over non-
adaptive methods such as Höffding’s bound.
Secondly, (empirical) Bernstein inequality, bound and algorithm are defined
for real-valued random variables, which limits its applicability for methods
that deal with other random variables. Adapting EBS to random variables
beyond real valued ones, i.e. random vectors or matrices, makes EBS ap-
plicable to more sophisticated measurement methods of quantum many-body
Hamiltonians [29].

49

A. Bernstein Bound Derivation
Let X1, ..., Xt be i.i.d random variables with range R, expected value µ and
variance σ. Let Xt = 1

t

∑t
i=1Xi and Σ2 = ∑t

i=1 σ
2
i

i.i.d.= tσ2.

P[|Xt − µ| ≥ ϵ] ≤ 2 exp
(
− (tϵ)2/2

Σ2 +Rtϵ/3

)
!= δ (A.1)

The equation above can be rearranged in form more suitable for algorithms.

|Xt − µ| ≥ ϵ (A.2)

ϵ can be calculated using the right-hand side of equation (A.1).

δ = 2 exp
(
− (tϵ)2/2
tσ2 +Rtϵ/3

)
(A.3)

Taking the natural log on both side and rearranging gives us:

ϵ2 = 2 ln (2/δ)︸ ︷︷ ︸
:=α

(
σ2

t
+ Rϵ

3t

)

0 = ϵ2 − 2Rα
3t ϵ− 2ασ2

t

Using the binomial theorem on the equation above gives us:(
ϵ− Rα

3n

)2
=
(
Rα

3n

)2
+ 2ασ2

t
(A.4)

Solving for ϵ:

ϵ = Rα

3t ±

√(
Rα

3t

)2
+ 2ασ2

t

!
≥ 0

ϵ = Rα

3t +

√(
Rα

3t

)2
+ 2ασ2

t
(A.5)

≥ σ

√
2 ln 2/δ

t
+ R ln 2/δ

3t (A.6)

Inserting the equation above into equation (A.2):

|Xt − µ| ≥ σ

√
2 ln (2/δ)

t
+ R ln (2/δ)

3t (A.7)

While this looks similar to the empirical Bernstein bound (19), this equation
uses the standard deviation σ not the empirical standard deviation σt.

50

B. Quantum Mechanics/ Computing

B.1. Exponential Operator Derivation

Let Ân×n
7 be an operator that fulfils Â2 = 1n×n and θ ∈ R then the following

equation holds:

eiθÂ = cos (θ)1+ i sin (θ)Â. (B.1)

This can be shown by expanding the exponential function with the Taylor
series:

eiθÂ =
∞∑

k=0

(iθÂ)k

k!

= Â0 + iθÂ+ (iθÂ)2

2! + (iθÂ)3

3! + . . .

= 1+ iθÂ− (θÂ)2

2! − i(θÂ)3

3! + (θÂ)4

4! + . . .

=
(

1− θ2

2! + θ4

4! + . . .

)
︸ ︷︷ ︸

cos(θ)

1+ i

(
θ − θ3

3! + θ5

5! + . . .

)
︸ ︷︷ ︸

sin(θ)

Â

= cos (θ)1+ i sin (θ)Â. (B.2)

B.2. Parameter Shift Rule

A method to calculate the gradient of a function is the so-called Parameter
shift rule. It makes use of the fact that functions like equation (72) can be
written in terms of sin and cos terms [30]. This makes it possible to write the
gradient ∇C(θk), for the k-th parameter, of a function C in terms of itself
shifted in its arguments.

∇C(θk) = C(θk + µk)− C(θk − µk)
2 sinµ , (B.3)

with µ ̸= nπ and µk = µêk.

7Any square matrix Mn×n also fulfils this equation: M0
n×n = 1n×n

51

B.3. Quantum Gates

Table 4: Summary of the gates introduced in this section.
Gate Circuit symbol Matrix

1 1

[
1 0
0 1

]

X X

[
0 1
1 0

]

Y Y

[
0 −i
i 0

]

Z Z

[
1 0
0 −1

]

H H
1√
2

[
1 1
1 −1

]

CNOT

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

RX(θ) RX

 cos
(

θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos

(
θ
2

)
RY (θ) RY

cos
(

θ
2

)
− sin

(
θ
2

)
sin
(

θ
2

)
cos

(
θ
2

)
RZ(θ) RZ

[
e−i θ

2 0
0 ei θ

2

]

52

C. Quantum Circuit Decomposition: Example Circuit
Let Ĥ = (Z ⊗ 1) + (1⊗X). As a matrix this can be written as:

Ĥ =

1 1 0 0
1 1 0 0
0 0 −1 1
0 0 1 −1

 (C.1)

The corresponding eigenstates are:

|ψ1⟩ = 1√
2

1
1
0
0

 , |ψ2⟩ = 1√
2

−1
1
0
0

 , |ψ3⟩ = 1√
2

0
0
1
1

 , |ψ4⟩ = 1√
2

0
0
−1
1

 , (C.2)

with λ1 = 2, λ2 = λ3 = 0 and λ4 = −2.
Knowing the the eigenstates and the eigenvalues, the eigenvalue decomposition
of Ĥ is as follows:

Ĥ = ÛΛÛ†

= 1√
2

1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 −1 1

2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

 1√
2

1 1 0 0
−1 1 0 0
0 0 1 1
0 0 −1 1

 . (C.3)

D. Coefficients {gi} for eq. (105)
The coefficients are readily provided in Ref. [27] and listed here again for
convenience.

d g1 g2 g3 g4 g5 g6
0.20 2.8489 0.5678 -1.4508 0.6799 0.0791 0.0791
0.25 2.1868 0.5449 -1.2870 0.6719 0.0798 0.0798
0.30 1.7252 0.5215 -1.1458 0.6631 0.0806 0.0806
0.35 1.3827 0.4982 -1.0226 0.6537 0.0815 0.0815
0.40 1.1182 0.4754 -0.9145 0.6438 0.0825 0.0825
0.45 0.9083 0.4534 -0.8194 0.6336 0.0835 0.0835
0.50 0.7381 0.4325 -0.7355 0.6233 0.0846 0.0846
0.55 0.5979 0.4125 -0.6612 0.6129 0.0858 0.0858
0.60 0.4808 0.3937 -0.5950 0.6025 0.0870 0.0870
0.65 0.3819 0.3760 -0.5358 0.5921 0.0883 0.0883
0.70 0.2976 0.3593 -0.4826 0.5818 0.0896 0.0896
0.75 0.2252 0.3435 -0.4347 0.5716 0.0910 0.0910
0.80 0.1626 0.3288 -0.3915 0.5616 0.0925 0.0925
0.85 0.1083 0.3149 -0.3523 0.5518 0.0939 0.0939
0.90 0.0609 0.3018 -0.3168 0.5421 0.0954 0.0954
0.95 0.0193 0.2895 -0.2845 0.5327 0.0970 0.0970
1.00 -0.0172 0.2779 -0.2550 0.5235 0.0986 0.0986
1.05 -0.0493 0.2669 -0.2282 0.5146 0.1002 0.1002
1.10 -0.0778 0.2565 -0.2036 0.5059 0.1018 0.1018
1.15 -0.1029 0.2467 -0.1810 0.4974 0.1034 0.1034

53

d g1 g2 g3 g4 g5 g6
1.20 -0.1253 0.2374 -0.1603 0.4892 0.1050 0.1050
1.25 -0.1452 0.2286 -0.1413 0.4812 0.1067 0.1067
1.30 -0.1629 0.2203 -0.1238 0.4735 0.1083 0.1083
1.35 -0.1786 0.2123 -0.1077 0.4660 0.1100 0.1100
1.40 -0.1927 0.2048 -0.0929 0.4588 0.1116 0.1116
1.45 -0.2053 0.1976 -0.0792 0.4518 0.1133 0.1133
1.50 -0.2165 0.1908 -0.0666 0.4451 0.1149 0.1149
1.55 -0.2265 0.1843 -0.0549 0.4386 0.1165 0.1165
1.60 -0.2355 0.1782 -0.0442 0.4323 0.1181 0.1181
1.65 -0.2436 0.1723 -0.0342 0.4262 0.1196 0.1196
1.70 -0.2508 0.1667 -0.0251 0.4204 0.1211 0.1211
1.75 -0.2573 0.1615 -0.0166 0.4148 0.1226 0.1226
1.80 -0.2632 0.1565 -0.0088 0.4094 0.1241 0.1241
1.85 -0.2684 0.1517 -0.0015 0.4042 0.1256 0.1256
1.90 -0.2731 0.1472 0.0052 0.3992 0.1270 0.1270
1.95 -0.2774 0.1430 0.0114 0.3944 0.1284 0.1284
2.00 -0.2812 0.1390 0.0171 0.3898 0.1297 0.1297
2.05 -0.2847 0.1352 0.0223 0.3853 0.1310 0.1310
2.10 -0.2879 0.1316 0.0272 0.3811 0.1323 0.1323
2.15 -0.2908 0.1282 0.0317 0.3769 0.1335 0.1335
2.20 -0.2934 0.1251 0.0359 0.3730 0.1347 0.1347
2.25 -0.2958 0.1221 0.0397 0.3692 0.1359 0.1359
2.30 -0.2980 0.1193 0.0432 0.3655 0.1370 0.1370
2.35 -0.3000 0.1167 0.0465 0.3620 0.1381 0.1381
2.40 -0.3018 0.1142 0.0495 0.3586 0.1392 0.1392
2.45 -0.3035 0.1119 0.0523 0.3553 0.1402 0.1402
2.50 -0.3051 0.1098 0.0549 0.3521 0.1412 0.1412
2.55 -0.3066 0.1078 0.0572 0.3491 0.1422 0.1422
2.60 -0.3079 0.1059 0.0594 0.3461 0.1432 0.1432
2.65 -0.3092 0.1042 0.0614 0.3433 0.1441 0.1441
2.70 -0.3104 0.1026 0.0632 0.3406 0.1450 0.1450
2.75 -0.3115 0.1011 0.0649 0.3379 0.1458 0.1458
2.80 -0.3125 0.0997 0.0665 0.3354 0.1467 0.1467
2.85 -0.3135 0.0984 0.0679 0.3329 0.1475 0.1475

54

References
[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,

R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, et al., Quantum
supremacy using a programmable superconducting processor, Nature 574,
505 (2019).

[2] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo,
J. Qin, D. Wu, X. Ding, Y. Hu, et al., Quantum computational advantage
using photons, Science 370, 1460 (2020).

[3] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii,
J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, et al., Variational quantum
algorithms, Nature Reviews Physics 3, 625 (2021).

[4] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven,
Barren plateaus in quantum neural network training landscapes, Nature
communications 9, 4812 (2018).

[5] L. Bittel and M. Kliesch, Training variational quantum algorithms is np-
hard, Physical review letters 127, 120502 (2021).

[6] L. Bittel, J. Watty, and M. Kliesch, Fast gradient estimation for varia-
tional quantum algorithms, arXiv:2210.06484 [quant-ph] (2022).

[7] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love,
A. Aspuru-Guzik, and J. L. O’Brien, A variational eigenvalue solver on
a photonic quantum processor, Nature Communications 5, 4213 (2014).

[8] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, Quantum
approximate optimization algorithm: Performance, mechanism, and im-
plementation on near-term devices, Physical Review X 10, 021067 (2020).

[9] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall, An adap-
tive variational algorithm for exact molecular simulations on a quantum
computer, Nature communications 10, 3007 (2019).

[10] H. R. Grimsley, G. S. Barron, E. Barnes, S. E. Economou, and N. J. May-
hall, Adaptive, problem-tailored variational quantum eigensolver mitigates
rough parameter landscapes and barren plateaus, npj Quantum Informa-
tion 9 (2023), 10.1038/s41534-023-00681-0.

[11] J. K. Blitzstein and J. Hwang, Introduction to probability (Crc Press Boca
Raton, FL, 2015).

[12] T. Popoviciu, Sur les équations algébriques ayant toutes leurs racines
réelles, Mathematica 9, 20 (1935).

[13] M. Mitzenmacher and E. Upfal, Probability and computing: Randomiza-
tion and probabilistic techniques in algorithms and data analysis (Cam-
bridge university press, 2017).

[14] M. Kliesch, Characterization, certification, and validation of quantum sys-
tems, (2020).

55

http://arxiv.org/abs/2210.06484
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1038/s41534-023-00681-0
http://dx.doi.org/10.1038/s41534-023-00681-0

[15] V. Mnih, C. Szepesvári, and J.-Y. Audibert, Empirical bernstein stop-
ping, Proceedings of the 25th international conference on Machine learn-
ing, , 672 (2008).

[16] J.-Y. Audibert, R. Munos, and C. Szepesvári, Variance estimates and
exploration function in multi-armed bandit, CERTIS Research Report 07–
31, (2007).

[17] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum
2, 79 (2018).

[18] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information, Vol. 54 (2010).

[19] Smite-Meister, Bloch sphere, a geometrical representation of a two-level
quantum system, (2009).

[20] A. E. D. Deutsch, A. Barenco, Universality in quantum computation,
Proceedings of the Royal Society of London. Series A: Mathematical and
Physical Sciences 449, 669 (1995).

[21] G. E. Crooks, Gates, states, and circuits (2020).

[22] T. Hoffmann and D. Brown, Gradient estimation with constant scaling for
hybrid quantum machine learning, arXiv:2211.13981 [quant-ph] (2022).

[23] V. Mnih, Efficient stopping rules (2008).

[24] U. Tepe, Empiricalbernsteinalgorithm, (2023).

[25] V. Fedoriaka, Decomposition of unitary matrix into quantum gates,
(2019).

[26] V. Fedoriaka, Tool for decomposing unitary matrix into quantum gates,
(2020).

[27] P. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean,
R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, et al., Scalable
quantum simulation of molecular energies, Physical Review X 6, 031007
(2016).

[28] A. Arrasmith, L. Cincio, R. D. Somma, and P. J. Coles, Oper-
ator sampling for shot-frugal optimization in variational algorithms,
arXiv:2004.06252 [quant-ph] (2020).

[29] A. Gresch and M. Kliesch, Guaranteed efficient energy estimation of quan-
tum many-body hamiltonians using shadowgrouping, arXiv:2301.03385
[quant-ph] (2023).

[30] A. Mari, T. R. Bromley, and N. Killoran, Estimating the gradient and
higher-order derivatives on quantum hardware, Phys. Rev. A 103, 012405
(2021).

56

https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg
https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg
http://dx.doi.org/10.1098/rspa.1995.0065
http://dx.doi.org/10.1098/rspa.1995.0065
http://arxiv.org/abs/2211.13981
https://github.com/UgurTepe/EmpiricalBernsteinAlgorithm
https://github.com/fedimser/quantum_decomp
http://arxiv.org/abs/2004.06252
http://arxiv.org/abs/2301.03385
http://arxiv.org/abs/2301.03385
http://dx.doi.org/10.1103/PhysRevA.103.012405
http://dx.doi.org/10.1103/PhysRevA.103.012405

	Introduction
	Preliminaries
	Probability Theory
	Random Variables
	Expectation Value
	Variance

	Concentration Inequalities
	Markov's Inequality
	Höffding's Inequality
	Bernstein's Inequality
	Höffding's vs. Bernstein's Inequality

	Quantum mechanics
	Schrödinger's Equation
	Operators
	Operator Exponential

	Quantum computing
	Qubits
	Pauli Operators/ Matrices
	Quantum Gates
	Measurements in Different Bases
	Variational Quantum Algorithms

	Methods
	Empirical Bernstein Stopping (EBS)
	(,)-Stopping Rules
	Empirical Bernstein Stopping Rule
	Base Algorithm
	Modifications on EBA
	Effect of the Variance on EBS

	Constructing a suitable VQE ansatz
	Quantum Decomposition
	Hamiltonian to Parametrized Circuit
	EBA inside a VQE

	Results
	Toy Example: Two Qubit System
	Effect of on Actual Accuracy and Success Probability
	Effect of on Sample Complexity

	Dissociation Curve of H2
	VQE run for fixed d
	Comparing Measurement Strategies
	Effect of on Actual Accuracy and Success Probability
	Effect of on Sample Complexity
	Dissociation Curve

	Conclusion
	Outlook
	Bernstein Bound Derivation
	Quantum Mechanics/ Computing
	Exponential Operator Derivation
	Parameter Shift Rule
	Quantum Gates

	Quantum Circuit Decomposition: Example Circuit
	Coefficients {gi} for eq. (105)

